Prajithr04
commited on
Commit
·
9889643
1
Parent(s):
7671fea
add files
Browse files- Dockerfile +13 -0
- app.py +201 -0
- chromadb/chroma.sqlite3 +0 -0
- requirements.txt +0 -0
Dockerfile
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.12
|
2 |
+
|
3 |
+
RUN useradd -m -u 1000 user
|
4 |
+
USER user
|
5 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
6 |
+
|
7 |
+
WORKDIR /app
|
8 |
+
|
9 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
10 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
11 |
+
|
12 |
+
COPY --chown=user . /app
|
13 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
from pydantic import BaseModel
|
3 |
+
import pandas as pd
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
import chromadb
|
6 |
+
from fastapi.middleware.cors import CORSMiddleware
|
7 |
+
import uvicorn
|
8 |
+
import requests
|
9 |
+
# Define FastAPI app
|
10 |
+
app = FastAPI()
|
11 |
+
|
12 |
+
origins = [
|
13 |
+
"http://localhost:5173",
|
14 |
+
"localhost:5173"
|
15 |
+
]
|
16 |
+
|
17 |
+
|
18 |
+
app.add_middleware(
|
19 |
+
CORSMiddleware,
|
20 |
+
allow_origins=origins,
|
21 |
+
allow_credentials=True,
|
22 |
+
allow_methods=["*"],
|
23 |
+
allow_headers=["*"]
|
24 |
+
)
|
25 |
+
|
26 |
+
# Load the dataset and model at startup
|
27 |
+
df = pd.read_csv("hf://datasets/QuyenAnhDE/Diseases_Symptoms/Diseases_Symptoms.csv")
|
28 |
+
df['Symptoms'] = df['Symptoms'].str.split(',')
|
29 |
+
df['Symptoms'] = df['Symptoms'].apply(lambda x: [s.strip() for s in x])
|
30 |
+
|
31 |
+
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
32 |
+
client = chromadb.PersistentClient(path='./chromadb')
|
33 |
+
collection = client.get_or_create_collection(name="symptomsvector")
|
34 |
+
|
35 |
+
class SymptomQuery(BaseModel):
|
36 |
+
symptom: str
|
37 |
+
|
38 |
+
# Endpoint to handle symptom query and return matching symptoms
|
39 |
+
@app.post("/find_matching_symptoms")
|
40 |
+
def find_matching_symptoms(query: SymptomQuery):
|
41 |
+
# Generate embedding for the symptom query
|
42 |
+
symptoms = query.symptom.split(',')
|
43 |
+
all_results = []
|
44 |
+
|
45 |
+
for symptom in symptoms:
|
46 |
+
symptom = symptom.strip()
|
47 |
+
query_embedding = model.encode([symptom])
|
48 |
+
|
49 |
+
# Perform similarity search in ChromaDB
|
50 |
+
results = collection.query(
|
51 |
+
query_embeddings=query_embedding.tolist(),
|
52 |
+
n_results=3 # Return top 3 similar symptoms for each symptom
|
53 |
+
)
|
54 |
+
all_results.extend(results['documents'][0])
|
55 |
+
|
56 |
+
# Remove duplicates while preserving order
|
57 |
+
matching_symptoms = list(dict.fromkeys(all_results))
|
58 |
+
|
59 |
+
return {"matching_symptoms": matching_symptoms}
|
60 |
+
|
61 |
+
# Endpoint to handle symptom query and return matching diseases
|
62 |
+
@app.post("/find_matching_diseases")
|
63 |
+
def find_matching_diseases(query: SymptomQuery):
|
64 |
+
# Generate embedding for the symptom query
|
65 |
+
query_embedding = model.encode([query.symptom])
|
66 |
+
|
67 |
+
# Perform similarity search in ChromaDB
|
68 |
+
results = collection.query(
|
69 |
+
query_embeddings=query_embedding.tolist(),
|
70 |
+
n_results=5 # Return top 5 similar symptoms
|
71 |
+
)
|
72 |
+
|
73 |
+
# Extract matching symptoms
|
74 |
+
matching_symptoms = results['documents'][0]
|
75 |
+
|
76 |
+
# Filter diseases that match the symptoms
|
77 |
+
matching_diseases = df[df['Symptoms'].apply(lambda x: any(s in matching_symptoms for s in x))]
|
78 |
+
|
79 |
+
return {"matching_diseases": matching_diseases['Name'].tolist()}
|
80 |
+
|
81 |
+
# Endpoint to handle symptom query and return detailed disease list
|
82 |
+
@app.post("/find_disease_list")
|
83 |
+
def find_disease_list(query: SymptomQuery):
|
84 |
+
# Generate embedding for the symptom query
|
85 |
+
query_embedding = model.encode([query.symptom])
|
86 |
+
|
87 |
+
# Perform similarity search in ChromaDB
|
88 |
+
results = collection.query(
|
89 |
+
query_embeddings=query_embedding.tolist(),
|
90 |
+
n_results=5 # Return top 5 similar symptoms
|
91 |
+
)
|
92 |
+
|
93 |
+
# Extract matching symptoms
|
94 |
+
matching_symptoms = results['documents'][0]
|
95 |
+
|
96 |
+
# Filter diseases that match the symptoms
|
97 |
+
matching_diseases = df[df['Symptoms'].apply(lambda x: any(s in matching_symptoms for s in x))]
|
98 |
+
|
99 |
+
# Create a list of disease information
|
100 |
+
disease_list = []
|
101 |
+
symptoms_list = []
|
102 |
+
unique_symptoms_list = []
|
103 |
+
for _, row in matching_diseases.iterrows():
|
104 |
+
disease_info = {
|
105 |
+
'Disease': row['Name'],
|
106 |
+
'Symptoms': row['Symptoms'],
|
107 |
+
'Treatments': row['Treatments']
|
108 |
+
}
|
109 |
+
disease_list.append(disease_info)
|
110 |
+
symptoms_info = row['Symptoms']
|
111 |
+
symptoms_list.append(symptoms_info)
|
112 |
+
for i in range(len(symptoms_list)):
|
113 |
+
for j in range(len(symptoms_list[i])):
|
114 |
+
if symptoms_list[i][j] not in unique_symptoms_list:
|
115 |
+
unique_symptoms_list.append(symptoms_list[i][j])
|
116 |
+
return {"disease_list": disease_list, "unique_symptoms_list": unique_symptoms_list}
|
117 |
+
|
118 |
+
class SelectedSymptomsQuery(BaseModel):
|
119 |
+
selected_symptoms: list
|
120 |
+
|
121 |
+
@app.post("/find_disease")
|
122 |
+
def find_disease(query: SelectedSymptomsQuery):
|
123 |
+
selected_symptoms = query.selected_symptoms
|
124 |
+
# Filter diseases that match at least one of the selected symptoms
|
125 |
+
matching_diseases = df[df['Symptoms'].apply(lambda x: any(s in x for s in selected_symptoms))]
|
126 |
+
|
127 |
+
# Sort diseases by the number of matching symptoms in descending order
|
128 |
+
matching_diseases['match_count'] = matching_diseases['Symptoms'].apply(lambda x: sum(s in selected_symptoms for s in x))
|
129 |
+
matching_diseases = matching_diseases.sort_values(by='match_count', ascending=False)
|
130 |
+
|
131 |
+
# Create a list of disease information
|
132 |
+
disease_list = []
|
133 |
+
max_match_count_disease = None
|
134 |
+
max_match_count = -1
|
135 |
+
|
136 |
+
for _, row in matching_diseases.iterrows():
|
137 |
+
disease_info = {
|
138 |
+
'Disease': row['Name'],
|
139 |
+
'Symptoms': row['Symptoms'],
|
140 |
+
'Treatments': row['Treatments'],
|
141 |
+
'MatchCount': row['match_count']
|
142 |
+
}
|
143 |
+
disease_list.append(disease_info)
|
144 |
+
|
145 |
+
# Check if this disease has the maximum match count
|
146 |
+
if row['match_count'] > max_match_count:
|
147 |
+
max_match_count = row['match_count']
|
148 |
+
max_match_count_disease = disease_info
|
149 |
+
|
150 |
+
return {"disease_list": disease_list, "max_match_count_disease": max_match_count_disease}
|
151 |
+
class DiseaseListQuery(BaseModel):
|
152 |
+
disease_list: list
|
153 |
+
|
154 |
+
class DiseaseDetail(BaseModel):
|
155 |
+
Disease: str
|
156 |
+
Symptoms: list
|
157 |
+
Treatments: str
|
158 |
+
MatchCount: int
|
159 |
+
|
160 |
+
@app.post("/pass2llm")
|
161 |
+
def pass2llm(query: DiseaseDetail):
|
162 |
+
# Prepare the data to be sent to the LLM API
|
163 |
+
disease_list_details = query
|
164 |
+
|
165 |
+
# Make the API request to the Ngrok endpoint to get the public URL
|
166 |
+
headers = {
|
167 |
+
"Authorization": "Bearer 2npJaJjnLBj1RGPcGf0QiyAAJHJ_5qqtw2divkpoAipqN9WLG",
|
168 |
+
"Ngrok-Version": "2"
|
169 |
+
}
|
170 |
+
response = requests.get("https://api.ngrok.com/endpoints", headers=headers)
|
171 |
+
|
172 |
+
# Check if the request was successful
|
173 |
+
if response.status_code == 200:
|
174 |
+
llm_api_response = response.json()
|
175 |
+
public_url = llm_api_response['endpoints'][0]['public_url']
|
176 |
+
|
177 |
+
# Prepare the prompt with the disease list details
|
178 |
+
prompt = f"Here is a list of diseases and their details: {disease_list_details}. Please generate a summary."
|
179 |
+
|
180 |
+
# Make the request to the LLM API
|
181 |
+
llm_headers = {
|
182 |
+
"Content-Type": "application/json"
|
183 |
+
}
|
184 |
+
llm_payload = {
|
185 |
+
"model": "llama3",
|
186 |
+
"prompt": prompt,
|
187 |
+
"stream": False
|
188 |
+
}
|
189 |
+
llm_response = requests.post(f"{public_url}/api/generate", headers=llm_headers, json=llm_payload)
|
190 |
+
|
191 |
+
# Check if the request to the LLM API was successful
|
192 |
+
if llm_response.status_code == 200:
|
193 |
+
llm_response_json = llm_response.json()
|
194 |
+
return {"message": "Successfully passed to LLM!", "llm_response": llm_response_json.get("response")}
|
195 |
+
else:
|
196 |
+
return {"message": "Failed to get response from LLM!", "error": llm_response.text}
|
197 |
+
else:
|
198 |
+
return {"message": "Failed to get public URL from Ngrok!", "error": response.text}
|
199 |
+
# To run the FastAPI app with Uvicorn
|
200 |
+
# if __name__ == "__main__":
|
201 |
+
# uvicorn.run(app, host="0.0.0.0", port=8000)
|
chromadb/chroma.sqlite3
ADDED
Binary file (168 kB). View file
|
|
requirements.txt
ADDED
Binary file (5.88 kB). View file
|
|