Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from byaldi import RAGMultiModalModel
|
3 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
4 |
+
from qwen_vl_utils import process_vision_info
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
+
import re
|
8 |
+
|
9 |
+
def highlight_text(text, term):
|
10 |
+
highlighted_text = re.sub(f"({term})", r'<mark>\1</mark>', text, flags=re.IGNORECASE)
|
11 |
+
return highlighted_text
|
12 |
+
|
13 |
+
@st.cache_resource
|
14 |
+
def load_models():
|
15 |
+
RAG = RAGMultiModalModel.from_pretrained("vidore/colpali")
|
16 |
+
|
17 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
18 |
+
"Qwen/Qwen2-VL-2B-Instruct",
|
19 |
+
trust_remote_code=True,
|
20 |
+
torch_dtype=torch.bfloat16).cuda().eval()
|
21 |
+
|
22 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True)
|
23 |
+
|
24 |
+
return model, processor, RAG
|
25 |
+
|
26 |
+
if 'is_indexed' not in st.session_state:
|
27 |
+
st.session_state['is_indexed'] = False
|
28 |
+
|
29 |
+
st.title("Image to Text Extraction and Search with Highlighting")
|
30 |
+
|
31 |
+
uploaded_file = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
|
32 |
+
if uploaded_file is not None:
|
33 |
+
# Save the uploaded image to a temporary file
|
34 |
+
temp_file_path = f"temp_{uploaded_file.name}"
|
35 |
+
with open(temp_file_path, "wb") as f:
|
36 |
+
f.write(uploaded_file.getbuffer())
|
37 |
+
|
38 |
+
image = Image.open(uploaded_file)
|
39 |
+
images = [image]
|
40 |
+
st.image(image, caption='Uploaded Image', use_column_width=True)
|
41 |
+
|
42 |
+
model, processor, RAG = load_models()
|
43 |
+
|
44 |
+
# Text Extraction from Image
|
45 |
+
messages = [
|
46 |
+
{
|
47 |
+
"role": "user",
|
48 |
+
"content": [
|
49 |
+
{
|
50 |
+
"type": "image",
|
51 |
+
"image": image,
|
52 |
+
},
|
53 |
+
{"type": "text", "text": "Extract the text from this image."},
|
54 |
+
],
|
55 |
+
}
|
56 |
+
]
|
57 |
+
|
58 |
+
# Process the image and text for input
|
59 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
60 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
61 |
+
inputs = processor(
|
62 |
+
text=[text],
|
63 |
+
images=image_inputs,
|
64 |
+
videos=video_inputs,
|
65 |
+
padding=True,
|
66 |
+
return_tensors="pt",
|
67 |
+
)
|
68 |
+
inputs = inputs.to("cuda")
|
69 |
+
|
70 |
+
# Generate the text from the image using the model
|
71 |
+
generated_ids = model.generate(**inputs, max_new_tokens=5000)
|
72 |
+
|
73 |
+
generated_ids_trimmed = [
|
74 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
75 |
+
]
|
76 |
+
extracted_text = processor.batch_decode(
|
77 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
78 |
+
)
|
79 |
+
extracted_text = "\n".join(extracted_text) # Convert list to a single string
|
80 |
+
|
81 |
+
st.subheader("Extracted Text:")
|
82 |
+
st.write(extracted_text)
|
83 |
+
|
84 |
+
# Save the extracted text to a file
|
85 |
+
with open("extracted_text.txt", "w", encoding="utf-8") as f:
|
86 |
+
f.write(extracted_text)
|
87 |
+
|
88 |
+
# Search Query
|
89 |
+
query = st.text_input("Search in Extracted Text", "")
|
90 |
+
|
91 |
+
if query:
|
92 |
+
# If the query is a single word, highlight its occurrences
|
93 |
+
if len(query.split()) == 1:
|
94 |
+
# Highlight the search term in the extracted text
|
95 |
+
highlighted_text = highlight_text(extracted_text, query)
|
96 |
+
st.subheader("Search Result (Word Occurrences):")
|
97 |
+
st.markdown(highlighted_text, unsafe_allow_html=True)
|
98 |
+
|
99 |
+
# If the query is more than one word, use RAG for Intelli search
|
100 |
+
else:
|
101 |
+
# Only index the image once
|
102 |
+
if not st.session_state['is_indexed']:
|
103 |
+
try:
|
104 |
+
RAG.index(
|
105 |
+
input_path=temp_file_path, # Use the local file path for indexing
|
106 |
+
index_name="image_index", # index will be saved at index_root/index_name/
|
107 |
+
store_collection_with_index=False,
|
108 |
+
overwrite=True
|
109 |
+
)
|
110 |
+
st.session_state['is_indexed'] = True # Mark document as indexed
|
111 |
+
except Exception as e:
|
112 |
+
st.error(f"Error during indexing: {str(e)}")
|
113 |
+
|
114 |
+
# Perform search using the query
|
115 |
+
try:
|
116 |
+
results = RAG.search(query, k=1)
|
117 |
+
query_image_index = results[0]["page_num"] - 1
|
118 |
+
|
119 |
+
# Get the result text related to the query
|
120 |
+
query_messages = [
|
121 |
+
{
|
122 |
+
"role": "user",
|
123 |
+
"content": [
|
124 |
+
{
|
125 |
+
"type": "image",
|
126 |
+
"image": images[query_image_index],
|
127 |
+
},
|
128 |
+
{"type": "text", "text": query},
|
129 |
+
],
|
130 |
+
}
|
131 |
+
]
|
132 |
+
|
133 |
+
# Generate the answer using the RAG model
|
134 |
+
text = processor.apply_chat_template(
|
135 |
+
query_messages, tokenize=False, add_generation_prompt=True
|
136 |
+
)
|
137 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
138 |
+
inputs = processor(
|
139 |
+
text=[text],
|
140 |
+
images=image_inputs,
|
141 |
+
videos=video_inputs,
|
142 |
+
padding=True,
|
143 |
+
return_tensors="pt",
|
144 |
+
)
|
145 |
+
inputs = inputs.to("cuda")
|
146 |
+
|
147 |
+
generated_ids_query = model.generate(**inputs, max_new_tokens=1000)
|
148 |
+
generated_ids_trimmed = [
|
149 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids_query)
|
150 |
+
]
|
151 |
+
query_result = processor.batch_decode(
|
152 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
153 |
+
)
|
154 |
+
|
155 |
+
# Highlight the query within the result
|
156 |
+
highlighted_result = highlight_text("\n".join(query_result), query)
|
157 |
+
|
158 |
+
# Display the query result
|
159 |
+
st.subheader("Search Result (Intelli Answer):")
|
160 |
+
st.markdown(highlighted_result, unsafe_allow_html=True)
|
161 |
+
|
162 |
+
except Exception as e:
|
163 |
+
st.error(f"Error during search: {str(e)}")
|
164 |
+
|