Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import gradio as gr
|
|
2 |
from transformers import pipeline
|
3 |
import random
|
4 |
from datetime import datetime
|
|
|
5 |
|
6 |
# Initialize models with smaller, faster alternatives
|
7 |
sentiment_analyzer = pipeline(
|
@@ -10,6 +11,9 @@ sentiment_analyzer = pipeline(
|
|
10 |
device=-1 # Force CPU usage
|
11 |
)
|
12 |
|
|
|
|
|
|
|
13 |
# Pre-defined prompts and affirmations for different sentiments
|
14 |
PROMPT_TEMPLATES = {
|
15 |
"POSITIVE": [
|
@@ -21,6 +25,11 @@ PROMPT_TEMPLATES = {
|
|
21 |
"- What can you learn from this challenging situation?",
|
22 |
"- What small step could you take to feel better?",
|
23 |
"- Who or what helps you feel supported during difficult times?"
|
|
|
|
|
|
|
|
|
|
|
24 |
]
|
25 |
}
|
26 |
|
@@ -34,6 +43,11 @@ AFFIRMATIONS = {
|
|
34 |
"This too shall pass, and I am growing stronger.",
|
35 |
"I trust in my ability to handle challenging situations.",
|
36 |
"Every experience is teaching me something valuable."
|
|
|
|
|
|
|
|
|
|
|
37 |
]
|
38 |
}
|
39 |
|
@@ -42,11 +56,11 @@ class JournalCompanion:
|
|
42 |
self.entries = []
|
43 |
|
44 |
def get_prompts(self, sentiment):
|
45 |
-
prompts = PROMPT_TEMPLATES.get(sentiment, PROMPT_TEMPLATES["
|
46 |
return "\n\nReflective Prompts:\n" + "\n".join(prompts)
|
47 |
|
48 |
def get_affirmation(self, sentiment):
|
49 |
-
affirmations = AFFIRMATIONS.get(sentiment, AFFIRMATIONS["
|
50 |
return random.choice(affirmations)
|
51 |
|
52 |
def analyze_entry(self, entry_text):
|
@@ -59,7 +73,7 @@ class JournalCompanion:
|
|
59 |
sentiment = sentiment_result["label"].upper()
|
60 |
sentiment_score = sentiment_result["score"]
|
61 |
except Exception as e:
|
62 |
-
|
63 |
return (
|
64 |
"An error occurred during analysis. Please try again.",
|
65 |
"Error",
|
@@ -86,18 +100,28 @@ class JournalCompanion:
|
|
86 |
def get_monthly_insights(self):
|
87 |
if not self.entries:
|
88 |
return "No entries yet to analyze."
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
try:
|
94 |
percentage_positive = (positive_entries / total_entries * 100)
|
95 |
-
|
|
|
96 |
|
97 |
insights = f"""Monthly Insights:
|
98 |
Total Entries: {total_entries}
|
99 |
Positive Entries: {positive_entries} ({percentage_positive:.1f}%)
|
100 |
-
|
|
|
101 |
"""
|
102 |
return insights
|
103 |
except ZeroDivisionError:
|
@@ -227,17 +251,4 @@ def create_journal_interface():
|
|
227 |
submit_btn.click(
|
228 |
fn=journal.analyze_entry,
|
229 |
inputs=[entry_input],
|
230 |
-
outputs=[
|
231 |
-
)
|
232 |
-
|
233 |
-
insights_btn.click(
|
234 |
-
fn=journal.get_monthly_insights,
|
235 |
-
inputs=[],
|
236 |
-
outputs=[insights_output]
|
237 |
-
)
|
238 |
-
|
239 |
-
return interface
|
240 |
-
|
241 |
-
if __name__ == "__main__":
|
242 |
-
interface = create_journal_interface()
|
243 |
-
interface.launch()
|
|
|
2 |
from transformers import pipeline
|
3 |
import random
|
4 |
from datetime import datetime
|
5 |
+
import logging
|
6 |
|
7 |
# Initialize models with smaller, faster alternatives
|
8 |
sentiment_analyzer = pipeline(
|
|
|
11 |
device=-1 # Force CPU usage
|
12 |
)
|
13 |
|
14 |
+
# Configure logging
|
15 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
16 |
+
|
17 |
# Pre-defined prompts and affirmations for different sentiments
|
18 |
PROMPT_TEMPLATES = {
|
19 |
"POSITIVE": [
|
|
|
25 |
"- What can you learn from this challenging situation?",
|
26 |
"- What small step could you take to feel better?",
|
27 |
"- Who or what helps you feel supported during difficult times?"
|
28 |
+
],
|
29 |
+
"NEUTRAL": [
|
30 |
+
"- What does this experience teach you about balance?",
|
31 |
+
"- How does this experience fit into your overall life story?",
|
32 |
+
"- What is something small you are grateful for today?"
|
33 |
]
|
34 |
}
|
35 |
|
|
|
43 |
"This too shall pass, and I am growing stronger.",
|
44 |
"I trust in my ability to handle challenging situations.",
|
45 |
"Every experience is teaching me something valuable."
|
46 |
+
],
|
47 |
+
"NEUTRAL": [
|
48 |
+
"I appreciate the calmness of the present moment.",
|
49 |
+
"I am in harmony with life’s natural flow.",
|
50 |
+
"Balance is a gift I cultivate every day."
|
51 |
]
|
52 |
}
|
53 |
|
|
|
56 |
self.entries = []
|
57 |
|
58 |
def get_prompts(self, sentiment):
|
59 |
+
prompts = PROMPT_TEMPLATES.get(sentiment, PROMPT_TEMPLATES["NEUTRAL"])
|
60 |
return "\n\nReflective Prompts:\n" + "\n".join(prompts)
|
61 |
|
62 |
def get_affirmation(self, sentiment):
|
63 |
+
affirmations = AFFIRMATIONS.get(sentiment, AFFIRMATIONS["NEUTRAL"])
|
64 |
return random.choice(affirmations)
|
65 |
|
66 |
def analyze_entry(self, entry_text):
|
|
|
73 |
sentiment = sentiment_result["label"].upper()
|
74 |
sentiment_score = sentiment_result["score"]
|
75 |
except Exception as e:
|
76 |
+
logging.error("Error during sentiment analysis: %s", e)
|
77 |
return (
|
78 |
"An error occurred during analysis. Please try again.",
|
79 |
"Error",
|
|
|
100 |
def get_monthly_insights(self):
|
101 |
if not self.entries:
|
102 |
return "No entries yet to analyze."
|
103 |
+
|
104 |
+
current_month = datetime.now().month
|
105 |
+
monthly_entries = [entry for entry in self.entries if datetime.fromisoformat(entry["timestamp"]).month == current_month]
|
106 |
+
|
107 |
+
total_entries = len(monthly_entries)
|
108 |
+
if total_entries == 0:
|
109 |
+
return "No entries this month to analyze."
|
110 |
+
|
111 |
+
positive_entries = sum(1 for entry in monthly_entries if entry["sentiment"] == "POSITIVE")
|
112 |
+
neutral_entries = sum(1 for entry in monthly_entries if entry["sentiment"] == "NEUTRAL")
|
113 |
+
negative_entries = total_entries - positive_entries - neutral_entries
|
114 |
|
115 |
try:
|
116 |
percentage_positive = (positive_entries / total_entries * 100)
|
117 |
+
percentage_neutral = (neutral_entries / total_entries * 100)
|
118 |
+
percentage_negative = (negative_entries / total_entries * 100)
|
119 |
|
120 |
insights = f"""Monthly Insights:
|
121 |
Total Entries: {total_entries}
|
122 |
Positive Entries: {positive_entries} ({percentage_positive:.1f}%)
|
123 |
+
Neutral Entries: {neutral_entries} ({percentage_neutral:.1f}%)
|
124 |
+
Negative Entries: {negative_entries} ({percentage_negative:.1f}%)
|
125 |
"""
|
126 |
return insights
|
127 |
except ZeroDivisionError:
|
|
|
251 |
submit_btn.click(
|
252 |
fn=journal.analyze_entry,
|
253 |
inputs=[entry_input],
|
254 |
+
outputs=[result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|