Spaces:
Running
Running
Pranav0111
commited on
Commit
•
7aec52d
1
Parent(s):
2c416c0
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
|
3 |
import random
|
4 |
from datetime import datetime
|
5 |
|
6 |
-
# Initialize models
|
7 |
sentiment_analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
|
8 |
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
@@ -18,8 +18,88 @@ text_generator = pipeline(
|
|
18 |
pad_token_id=tokenizer.eos_token_id
|
19 |
)
|
20 |
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
def create_journal_interface():
|
25 |
journal = JournalCompanion()
|
|
|
3 |
import random
|
4 |
from datetime import datetime
|
5 |
|
6 |
+
# Initialize models
|
7 |
sentiment_analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
|
8 |
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
18 |
pad_token_id=tokenizer.eos_token_id
|
19 |
)
|
20 |
|
21 |
+
class JournalCompanion:
|
22 |
+
def __init__(self):
|
23 |
+
self.entries = []
|
24 |
+
|
25 |
+
def generate_prompts(self, sentiment):
|
26 |
+
prompt_template = f"""Generate three reflective journal prompts for someone feeling {sentiment.lower()}.
|
27 |
+
Make them thoughtful and encouraging. Format them as a bullet point list."""
|
28 |
+
|
29 |
+
try:
|
30 |
+
response = text_generator(prompt_template)[0]['generated_text']
|
31 |
+
# Extract the generated prompts after the input prompt
|
32 |
+
prompts = response[len(prompt_template):]
|
33 |
+
return "\n\nReflective Prompts:" + prompts
|
34 |
+
except Exception as e:
|
35 |
+
print("Error generating prompts:", e)
|
36 |
+
return "\n\nReflective Prompts:\n- What thoughts and feelings are you experiencing right now?\n- How has this experience affected you?\n- What would be helpful for you at this moment?"
|
37 |
+
|
38 |
+
def generate_affirmation(self, sentiment):
|
39 |
+
affirmation_template = f"Generate a short, encouraging affirmation for someone feeling {sentiment.lower()}."
|
40 |
+
|
41 |
+
try:
|
42 |
+
response = text_generator(affirmation_template)[0]['generated_text']
|
43 |
+
# Extract the generated affirmation after the input prompt
|
44 |
+
affirmation = response[len(affirmation_template):].strip()
|
45 |
+
return affirmation
|
46 |
+
except Exception as e:
|
47 |
+
print("Error generating affirmation:", e)
|
48 |
+
return "I acknowledge my feelings and trust in my ability to handle this moment."
|
49 |
+
|
50 |
+
def analyze_entry(self, entry_text):
|
51 |
+
if not entry_text.strip():
|
52 |
+
return ("Please write something in your journal entry.", "", "", "")
|
53 |
+
|
54 |
+
try:
|
55 |
+
# Perform sentiment analysis
|
56 |
+
sentiment_result = sentiment_analyzer(entry_text)[0]
|
57 |
+
sentiment = sentiment_result["label"].upper()
|
58 |
+
sentiment_score = sentiment_result["score"]
|
59 |
+
except Exception as e:
|
60 |
+
print("Error during sentiment analysis:", e)
|
61 |
+
return (
|
62 |
+
"An error occurred during analysis. Please try again.",
|
63 |
+
"Error",
|
64 |
+
"Could not analyze sentiment due to an error.",
|
65 |
+
"Could not generate affirmation due to an error."
|
66 |
+
)
|
67 |
+
|
68 |
+
entry_data = {
|
69 |
+
"text": entry_text,
|
70 |
+
"timestamp": datetime.now().isoformat(),
|
71 |
+
"sentiment": sentiment,
|
72 |
+
"sentiment_score": sentiment_score
|
73 |
+
}
|
74 |
+
self.entries.append(entry_data)
|
75 |
+
|
76 |
+
# Generate responses using TinyLlama
|
77 |
+
prompts = self.generate_prompts(sentiment)
|
78 |
+
affirmation = self.generate_affirmation(sentiment)
|
79 |
+
sentiment_percentage = f"{sentiment_score * 100:.1f}%"
|
80 |
+
message = f"Entry analyzed! Sentiment: {sentiment} ({sentiment_percentage} confidence)"
|
81 |
+
|
82 |
+
return message, sentiment, prompts, affirmation
|
83 |
+
|
84 |
+
def get_monthly_insights(self):
|
85 |
+
if not self.entries:
|
86 |
+
return "No entries yet to analyze."
|
87 |
+
|
88 |
+
total_entries = len(self.entries)
|
89 |
+
positive_entries = sum(1 for entry in self.entries if entry["sentiment"] == "POSITIVE")
|
90 |
+
|
91 |
+
try:
|
92 |
+
percentage_positive = (positive_entries / total_entries * 100)
|
93 |
+
percentage_negative = ((total_entries - positive_entries) / total_entries * 100)
|
94 |
+
|
95 |
+
insights = f"""Monthly Insights:
|
96 |
+
Total Entries: {total_entries}
|
97 |
+
Positive Entries: {positive_entries} ({percentage_positive:.1f}%)
|
98 |
+
Negative Entries: {total_entries - positive_entries} ({percentage_negative:.1f}%)
|
99 |
+
"""
|
100 |
+
return insights
|
101 |
+
except ZeroDivisionError:
|
102 |
+
return "No entries available for analysis."
|
103 |
|
104 |
def create_journal_interface():
|
105 |
journal = JournalCompanion()
|