Spaces:
Runtime error
Runtime error
Commit
·
ce57726
1
Parent(s):
3c17b68
Update app.py
Browse files
app.py
CHANGED
@@ -1,47 +1,54 @@
|
|
1 |
import gradio as gr
|
2 |
import re
|
|
|
|
|
3 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
|
5 |
tokenizer = AutoTokenizer.from_pretrained("potsawee/t5-large-generation-squad-QuestionAnswer")
|
6 |
model = AutoModelForSeq2SeqLM.from_pretrained("potsawee/t5-large-generation-squad-QuestionAnswer")
|
7 |
|
8 |
-
def
|
9 |
-
|
10 |
-
|
|
|
|
|
11 |
|
12 |
-
|
13 |
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
question_answer_pairs = []
|
16 |
|
17 |
-
for
|
18 |
-
|
19 |
-
outputs = model.generate(
|
20 |
question_answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
21 |
-
|
22 |
-
question_answer_pairs.append((f"Question:", question))
|
23 |
|
24 |
result = ''
|
25 |
-
|
26 |
-
for i in range(len(question_answer_pairs)):
|
27 |
-
if question_answer_pairs[i][1] == '':
|
28 |
-
break
|
29 |
-
question_part = question_answer_pairs[i][1].split("?")[0] + "?"
|
30 |
-
answer_part = question_answer_pairs[i][1].split("?")[1].strip()
|
31 |
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
return result
|
35 |
|
36 |
-
title = "Question
|
37 |
-
|
38 |
-
|
39 |
|
40 |
interface = gr.Interface(
|
41 |
-
fn=
|
42 |
-
inputs=
|
43 |
-
outputs=
|
44 |
title=title,
|
45 |
)
|
46 |
-
|
47 |
interface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import re
|
3 |
+
import os
|
4 |
+
import fitz
|
5 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
6 |
|
7 |
tokenizer = AutoTokenizer.from_pretrained("potsawee/t5-large-generation-squad-QuestionAnswer")
|
8 |
model = AutoModelForSeq2SeqLM.from_pretrained("potsawee/t5-large-generation-squad-QuestionAnswer")
|
9 |
|
10 |
+
def extract_text_from_pdf(pdf_file_path):
|
11 |
+
doc = fitz.open(pdf_file_path)
|
12 |
+
text = ""
|
13 |
+
for page in doc:
|
14 |
+
text+=page.get_text()
|
15 |
|
16 |
+
return text
|
17 |
|
18 |
+
def generate_question_answer_pairs(pdf_file):
|
19 |
+
if pdf_file is None:
|
20 |
+
return "Please upload a PDF file"
|
21 |
+
|
22 |
+
pdf_text = extract_text_from_pdf(pdf_file.name)
|
23 |
+
|
24 |
+
sentences = re.split(r'(?<=[.!?])', pdf_text)
|
25 |
question_answer_pairs = []
|
26 |
|
27 |
+
for sentence in sentences:
|
28 |
+
input_ids = tokenizer.encode(sentence, return_tensors="pt")
|
29 |
+
outputs = model.generate(input_ids, max_length=100, num_return_sequences=1)
|
30 |
question_answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
31 |
+
question_answer_pairs.append(question_answer)
|
|
|
32 |
|
33 |
result = ''
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
for question_answer in question_answer_pairs:
|
36 |
+
qa_parts = question_answer.split("?")
|
37 |
+
if len(qa_parts) >= 2:
|
38 |
+
question_part = qa_parts[0] + "?"
|
39 |
+
answer_part = qa_parts[1].strip()
|
40 |
+
result += f"Question: {question_part}\nAnswer: {answer_part}\n\n"
|
41 |
|
42 |
return result
|
43 |
|
44 |
+
title = "Question-Answer Pairs Generation"
|
45 |
+
input_file = gr.File(label="Upload a PDF file")
|
46 |
+
output_text = gr.Textbox()
|
47 |
|
48 |
interface = gr.Interface(
|
49 |
+
fn=generate_question_answer_pairs,
|
50 |
+
inputs=input_file,
|
51 |
+
outputs=output_text,
|
52 |
title=title,
|
53 |
)
|
|
|
54 |
interface.launch()
|