Spaces:
Runtime error
Runtime error
Pranjal2041
commited on
Commit
·
4014562
1
Parent(s):
353ec7a
Initial Commit
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitignore +4 -0
- .vscode/launch.json +13 -0
- ExamplesCreator.ipynb +116 -0
- Scrape.ipynb +0 -0
- amzn_examples.json +0 -0
- cleaned_code/Demo.ipynb +0 -0
- cleaned_code/DemoFast.ipynb +875 -0
- cleaned_code/bert_coil_map_dict_lemma255K_isotropic.json +0 -0
- cleaned_code/ckpt/Amzn13K/amzn_main_model.bin +3 -0
- cleaned_code/configs/PredsRemover.ipynb +149 -0
- cleaned_code/configs/ablation_amzn_1_coil.yml +85 -0
- cleaned_code/configs/ablation_amzn_1_descs.yml +89 -0
- cleaned_code/configs/ablation_amzn_1_hier.yml +85 -0
- cleaned_code/configs/ablation_amzn_1_relax.yml +86 -0
- cleaned_code/configs/ablation_amzn_eda.yml +81 -0
- cleaned_code/configs/ablation_amzn_eda_base.yml +85 -0
- cleaned_code/configs/ablation_amzn_eda_base2.yml +84 -0
- cleaned_code/configs/ablation_eurlex_1_base.yml +85 -0
- cleaned_code/configs/ablation_eurlex_1_coil.yml +88 -0
- cleaned_code/configs/ablation_eurlex_1_descs.yml +91 -0
- cleaned_code/configs/ablation_eurlex_1_hier_descs.yml +91 -0
- cleaned_code/configs/ablation_eurlex_1_hierarchy.yml +88 -0
- cleaned_code/configs/ablation_eurlex_1_relax.yml +86 -0
- cleaned_code/configs/ablation_eurlex_eda.yml +82 -0
- cleaned_code/configs/amzn13k_active_hfwnet.yml +79 -0
- cleaned_code/configs/amzn13k_active_highfreq.yml +87 -0
- cleaned_code/configs/amzn13k_active_random.yml +81 -0
- cleaned_code/configs/amzn13k_active_wnet.yml +79 -0
- cleaned_code/configs/amzn13k_active_wnet2.yml +86 -0
- cleaned_code/configs/amzn13k_baseline.yml +73 -0
- cleaned_code/configs/amzn13k_baseline_descs.yml +81 -0
- cleaned_code/configs/amzn13k_baseline_descs_edaaug.yml +75 -0
- cleaned_code/configs/amzn13k_baseline_descs_fullsup.yml +74 -0
- cleaned_code/configs/amzn13k_baseline_descs_masked_0.0.yml +75 -0
- cleaned_code/configs/amzn13k_baseline_descs_masked_0.2.yml +75 -0
- cleaned_code/configs/amzn13k_baseline_descs_masked_0.5.yml +75 -0
- cleaned_code/configs/amzn13k_baseline_descs_masked_0.9.yml +75 -0
- cleaned_code/configs/amzn13k_baseline_descs_merge.yml +76 -0
- cleaned_code/configs/amzn13k_baseline_fs.yml +80 -0
- cleaned_code/configs/amzn13k_baseline_fs2.yml +80 -0
- cleaned_code/configs/amzn13k_baseline_fs5.yml +80 -0
- cleaned_code/configs/amzn13k_baseline_hierdescs.yml +84 -0
- cleaned_code/configs/amzn13k_baseline_hierdescs_seen.yml +82 -0
- cleaned_code/configs/baseline.yml +52 -0
- cleaned_code/configs/eurlex4.3k_baseline.yml +87 -0
- cleaned_code/configs/eurlex4.3k_baseline2.yml +84 -0
- cleaned_code/configs/eurlex4.3k_baseline_fs.yml +90 -0
- cleaned_code/configs/eurlex4.3k_baseline_fs20.yml +90 -0
- cleaned_code/configs/eurlex4.3k_baseline_fs5.yml +78 -0
- cleaned_code/configs/eurlex4.3k_baseline_nl.yml +88 -0
.gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
cleaned_code/temp_file.pkl
|
2 |
+
cleaned_code/precomputed/Amzn13K/amzn_base_labels_data2.pkl
|
3 |
+
cleaned_code/precomputed/Amzn13K/amzn_base_labels_data3.pkl
|
4 |
+
__pycache__
|
.vscode/launch.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"version": "0.2.0",
|
3 |
+
"configurations": [
|
4 |
+
{
|
5 |
+
"name": "Python: Current File",
|
6 |
+
"type": "python",
|
7 |
+
"request": "launch",
|
8 |
+
"program": "${file}",
|
9 |
+
"console": "integratedTerminal",
|
10 |
+
"justMyCode": true
|
11 |
+
}
|
12 |
+
]
|
13 |
+
}
|
ExamplesCreator.ipynb
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [
|
8 |
+
{
|
9 |
+
"name": "stdout",
|
10 |
+
"output_type": "stream",
|
11 |
+
"text": [
|
12 |
+
"/n/fs/nlp-pranjal\n"
|
13 |
+
]
|
14 |
+
}
|
15 |
+
],
|
16 |
+
"source": [
|
17 |
+
"%cd ../../../"
|
18 |
+
]
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"cell_type": "code",
|
22 |
+
"execution_count": 2,
|
23 |
+
"metadata": {},
|
24 |
+
"outputs": [
|
25 |
+
{
|
26 |
+
"name": "stdout",
|
27 |
+
"output_type": "stream",
|
28 |
+
"text": [
|
29 |
+
"/n/fs/nlp-pranjal\n"
|
30 |
+
]
|
31 |
+
}
|
32 |
+
],
|
33 |
+
"source": [
|
34 |
+
"!pwd"
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"cell_type": "code",
|
39 |
+
"execution_count": 3,
|
40 |
+
"metadata": {},
|
41 |
+
"outputs": [
|
42 |
+
{
|
43 |
+
"name": "stdout",
|
44 |
+
"output_type": "stream",
|
45 |
+
"text": [
|
46 |
+
"/n/fs/nlp-pranjal/SemSup-LMLC/training/datasets/Amzn13K\n"
|
47 |
+
]
|
48 |
+
}
|
49 |
+
],
|
50 |
+
"source": [
|
51 |
+
"%cd SemSup-LMLC/training/datasets/Amzn13K"
|
52 |
+
]
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"cell_type": "code",
|
56 |
+
"execution_count": 4,
|
57 |
+
"metadata": {},
|
58 |
+
"outputs": [],
|
59 |
+
"source": [
|
60 |
+
"import json\n",
|
61 |
+
"td = [json.loads(x) for x in open('test.jsonl')]"
|
62 |
+
]
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"cell_type": "code",
|
66 |
+
"execution_count": 6,
|
67 |
+
"metadata": {},
|
68 |
+
"outputs": [],
|
69 |
+
"source": [
|
70 |
+
"import numpy as np\n",
|
71 |
+
"examples = np.random.choice(td, 100, replace=False)"
|
72 |
+
]
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"cell_type": "code",
|
76 |
+
"execution_count": 10,
|
77 |
+
"metadata": {},
|
78 |
+
"outputs": [],
|
79 |
+
"source": [
|
80 |
+
"json.dump(list(examples), open('amzn_examples.json','w'), indent=2)"
|
81 |
+
]
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"cell_type": "code",
|
85 |
+
"execution_count": null,
|
86 |
+
"metadata": {},
|
87 |
+
"outputs": [],
|
88 |
+
"source": []
|
89 |
+
}
|
90 |
+
],
|
91 |
+
"metadata": {
|
92 |
+
"interpreter": {
|
93 |
+
"hash": "90fcbf6f06d9a30c70fdaff45e14c5534421a599dc22a7267c486c9cb67dea6d"
|
94 |
+
},
|
95 |
+
"kernelspec": {
|
96 |
+
"display_name": "Python 3.9.12 ('base')",
|
97 |
+
"language": "python",
|
98 |
+
"name": "python3"
|
99 |
+
},
|
100 |
+
"language_info": {
|
101 |
+
"codemirror_mode": {
|
102 |
+
"name": "ipython",
|
103 |
+
"version": 3
|
104 |
+
},
|
105 |
+
"file_extension": ".py",
|
106 |
+
"mimetype": "text/x-python",
|
107 |
+
"name": "python",
|
108 |
+
"nbconvert_exporter": "python",
|
109 |
+
"pygments_lexer": "ipython3",
|
110 |
+
"version": "3.9.12"
|
111 |
+
},
|
112 |
+
"orig_nbformat": 4
|
113 |
+
},
|
114 |
+
"nbformat": 4,
|
115 |
+
"nbformat_minor": 2
|
116 |
+
}
|
Scrape.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
amzn_examples.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
cleaned_code/Demo.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
cleaned_code/DemoFast.ipynb
ADDED
@@ -0,0 +1,875 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import os\n",
|
10 |
+
"import numpy as np\n",
|
11 |
+
"import pickle\n",
|
12 |
+
"import h5py\n",
|
13 |
+
"from tqdm import tqdm\n",
|
14 |
+
"from transformers import AutoTokenizer\n",
|
15 |
+
"from scipy.special import expit "
|
16 |
+
]
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"cell_type": "code",
|
20 |
+
"execution_count": 2,
|
21 |
+
"metadata": {},
|
22 |
+
"outputs": [],
|
23 |
+
"source": [
|
24 |
+
"def compute_tok_score_cart(doc_reps, doc_input_ids, qry_reps, qry_input_ids, qry_attention_mask):\n",
|
25 |
+
" qry_input_ids = qry_input_ids.unsqueeze(2).unsqueeze(3) # Q * LQ * 1 * 1\n",
|
26 |
+
" doc_input_ids = doc_input_ids.unsqueeze(0).unsqueeze(1) # 1 * 1 * D * LD\n",
|
27 |
+
" exact_match = doc_input_ids == qry_input_ids # Q * LQ * D * LD\n",
|
28 |
+
" exact_match = exact_match.float()\n",
|
29 |
+
" scores_no_masking = torch.matmul(\n",
|
30 |
+
" qry_reps.view(-1, 16), # (Q * LQ) * d\n",
|
31 |
+
" doc_reps.view(-1, 16).transpose(0, 1) # d * (D * LD)\n",
|
32 |
+
" )\n",
|
33 |
+
" scores_no_masking = scores_no_masking.view(\n",
|
34 |
+
" *qry_reps.shape[:2], *doc_reps.shape[:2]) # Q * LQ * D * LD\n",
|
35 |
+
" scores, _ = (scores_no_masking * exact_match).max(dim=3) # Q * LQ * D\n",
|
36 |
+
" tok_scores = (scores * qry_attention_mask.reshape(-1, qry_attention_mask.shape[-1]).unsqueeze(2))[:, 1:].sum(1)\n",
|
37 |
+
" \n",
|
38 |
+
" return tok_scores\n",
|
39 |
+
"\n",
|
40 |
+
"import torch\n",
|
41 |
+
"from typing import Optional\n",
|
42 |
+
"def coil_fast_eval_forward(\n",
|
43 |
+
" input_ids: Optional[torch.Tensor] = None,\n",
|
44 |
+
" doc_reps = None,\n",
|
45 |
+
" logits: Optional[torch.Tensor] = None,\n",
|
46 |
+
" desc_input_ids = None,\n",
|
47 |
+
" desc_attention_mask = None,\n",
|
48 |
+
" lab_reps = None,\n",
|
49 |
+
" label_embeddings = None\n",
|
50 |
+
"):\n",
|
51 |
+
" tok_scores = compute_tok_score_cart(\n",
|
52 |
+
" doc_reps, input_ids,\n",
|
53 |
+
" lab_reps, desc_input_ids.reshape(-1, desc_input_ids.shape[-1]), desc_attention_mask\n",
|
54 |
+
" )\n",
|
55 |
+
" logits = (logits.unsqueeze(0) @ label_embeddings.T)\n",
|
56 |
+
" new_tok_scores = torch.zeros(logits.shape, device = logits.device)\n",
|
57 |
+
" for i in range(tok_scores.shape[1]):\n",
|
58 |
+
" stride = tok_scores.shape[0]//tok_scores.shape[1]\n",
|
59 |
+
" new_tok_scores[i] = tok_scores[i*stride: i*stride + stride ,i]\n",
|
60 |
+
" return (logits + new_tok_scores).squeeze()"
|
61 |
+
]
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"cell_type": "code",
|
65 |
+
"execution_count": 3,
|
66 |
+
"metadata": {},
|
67 |
+
"outputs": [],
|
68 |
+
"source": [
|
69 |
+
"label_list = [x.strip() for x in open('datasets/Amzn13K/all_labels.txt')]\n",
|
70 |
+
"unseen_label_list = [x.strip() for x in open('datasets/Amzn13K/unseen_labels_split6500_2.txt')]\n",
|
71 |
+
"num_labels = len(label_list)\n",
|
72 |
+
"label_list.sort() # For consistency\n",
|
73 |
+
"l2i = {v: i for i, v in enumerate(label_list)}\n",
|
74 |
+
"unseen_label_indexes = [l2i[x] for x in unseen_label_list]"
|
75 |
+
]
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"cell_type": "code",
|
79 |
+
"execution_count": 4,
|
80 |
+
"metadata": {},
|
81 |
+
"outputs": [],
|
82 |
+
"source": [
|
83 |
+
"import json\n",
|
84 |
+
"coil_cluster_map = json.load(open('bert_coil_map_dict_lemma255K_isotropic.json')) "
|
85 |
+
]
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"cell_type": "code",
|
89 |
+
"execution_count": 22,
|
90 |
+
"metadata": {},
|
91 |
+
"outputs": [],
|
92 |
+
"source": [
|
93 |
+
"label_preds = pickle.load(open('/n/fs/nlp-pranjal/SemSup-LMLC/training/ablation_amzn_1_main_labels_zsl.pkl','rb'))"
|
94 |
+
]
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"cell_type": "code",
|
98 |
+
"execution_count": 20,
|
99 |
+
"metadata": {},
|
100 |
+
"outputs": [],
|
101 |
+
"source": [
|
102 |
+
"label_preds = pickle.load(open('/n/fs/scratch/pranjal/seed_experiments/ablation_amzn_eda_labels_zsl_seed2.pkl','rb'))"
|
103 |
+
]
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"cell_type": "code",
|
107 |
+
"execution_count": 38,
|
108 |
+
"metadata": {},
|
109 |
+
"outputs": [
|
110 |
+
{
|
111 |
+
"name": "stderr",
|
112 |
+
"output_type": "stream",
|
113 |
+
"text": [
|
114 |
+
"100%|██████████| 13330/13330 [00:00<00:00, 64680.71it/s]\n"
|
115 |
+
]
|
116 |
+
}
|
117 |
+
],
|
118 |
+
"source": [
|
119 |
+
"all_lab_reps, all_label_embeddings, all_desc_input_ids, all_desc_attention_mask = [], [], [], []\n",
|
120 |
+
"for l in tqdm(label_list):\n",
|
121 |
+
" ll = label_preds[l]\n",
|
122 |
+
" lab_reps, label_embeddings, desc_input_ids, desc_attention_mask = ll[np.random.randint(len(ll))] \n",
|
123 |
+
" all_lab_reps.append(lab_reps.squeeze())\n",
|
124 |
+
" all_label_embeddings.append(label_embeddings.squeeze())\n",
|
125 |
+
" all_desc_input_ids.append(desc_input_ids.squeeze())\n",
|
126 |
+
" all_desc_attention_mask.append(desc_attention_mask.squeeze())\n",
|
127 |
+
"all_lab_reps = torch.stack(all_lab_reps).cpu()\n",
|
128 |
+
"all_label_embeddings = torch.stack(all_label_embeddings).cpu()\n",
|
129 |
+
"all_desc_input_ids = torch.stack(all_desc_input_ids).cpu()\n",
|
130 |
+
"all_desc_attention_mask = torch.stack(all_desc_attention_mask).cpu()\n",
|
131 |
+
"all_desc_input_ids_clus = torch.tensor([[coil_cluster_map[str(x.item())] for x in xx] for xx in all_desc_input_ids])"
|
132 |
+
]
|
133 |
+
},
|
134 |
+
{
|
135 |
+
"cell_type": "code",
|
136 |
+
"execution_count": null,
|
137 |
+
"metadata": {},
|
138 |
+
"outputs": [],
|
139 |
+
"source": [
|
140 |
+
"pickle.dump([all_lab_reps, all_label_embeddings, all_desc_input_ids, all_desc_input_ids_clus, all_desc_attention_mask], open('precomputed/Amzn13K/amzn_base_labels_data1_4.pkl','wb'))"
|
141 |
+
]
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"cell_type": "code",
|
145 |
+
"execution_count": 6,
|
146 |
+
"metadata": {},
|
147 |
+
"outputs": [],
|
148 |
+
"source": [
|
149 |
+
"device = 'cuda' if torch.cuda.is_available() else 'cpu'"
|
150 |
+
]
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"cell_type": "code",
|
154 |
+
"execution_count": 7,
|
155 |
+
"metadata": {},
|
156 |
+
"outputs": [],
|
157 |
+
"source": [
|
158 |
+
"all_lab_reps1, all_label_embeddings1, _, all_desc_input_ids1, all_desc_attention_mask1 = pickle.load(open('precomputed/Amzn13K/amzn_base_labels_data1.pkl','rb'))\n",
|
159 |
+
"all_lab_reps2, all_label_embeddings2, _, all_desc_input_ids2, all_desc_attention_mask2 = pickle.load(open('precomputed/Amzn13K/amzn_base_labels_data2.pkl','rb'))\n",
|
160 |
+
"all_lab_reps3, all_label_embeddings3, _, all_desc_input_ids3, all_desc_attention_mask3 = pickle.load(open('precomputed/Amzn13K/amzn_base_labels_data3.pkl','rb'))\n",
|
161 |
+
"\n",
|
162 |
+
"\n",
|
163 |
+
"all_lab_reps = [all_lab_reps1.to(device), all_lab_reps2.to(device), all_lab_reps3.to(device)]\n",
|
164 |
+
"all_label_embeddings = [all_label_embeddings1.to(device), all_label_embeddings2.to(device), all_label_embeddings3.to(device)]\n",
|
165 |
+
"all_desc_input_ids = [all_desc_input_ids1.to(device), all_desc_input_ids2.to(device), all_desc_input_ids3.to(device)]\n",
|
166 |
+
"all_desc_attention_mask = [all_desc_attention_mask1.to(device), all_desc_attention_mask2.to(device), all_desc_attention_mask3.to(device)]"
|
167 |
+
]
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"cell_type": "code",
|
171 |
+
"execution_count": 8,
|
172 |
+
"metadata": {},
|
173 |
+
"outputs": [
|
174 |
+
{
|
175 |
+
"name": "stdout",
|
176 |
+
"output_type": "stream",
|
177 |
+
"text": [
|
178 |
+
"Yaml Config is:\n",
|
179 |
+
"--------------------------------------------------------------------------------\n",
|
180 |
+
"{'task_name': 'amazon13k', 'dataset_name': 'amazon13k', 'dataset_config_name': None, 'max_seq_length': 160, 'overwrite_output_dir': False, 'overwrite_cache': False, 'pad_to_max_length': True, 'load_from_local': True, 'max_train_samples': None, 'max_eval_samples': 15000, 'max_predict_samples': None, 'train_file': '/n/fs/nlp-pranjal/SemSup-LMLC/training/datasets/Amzn13K/train_split6500_2.jsonl', 'validation_file': '/n/fs/nlp-pranjal/SemSup-LMLC/training/datasets/Amzn13K/test_unseen_split6500_2.jsonl', 'test_file': '/n/fs/nlp-pranjal/SemSup-LMLC/training/datasets/Amzn13K/test_unseen_split6500_2.jsonl', 'label_max_seq_length': 160, 'descriptions_file': '/n/fs/nlp-pranjal/SemSup-LMLC/training/datasets/Amzn13K/heir_withdescriptions_v3_v3_unseen_edaaug.json', 'test_descriptions_file': '/n/fs/nlp-pranjal/SemSup-LMLC/training/datasets/Amzn13K/heir_withdescriptions_v3_v3.json', 'all_labels': '/n/fs/nlp-pranjal/SemSup-LMLC/training/datasets/Amzn13K/all_labels.txt', 'test_labels': '/n/fs/nlp-pranjal/SemSup-LMLC/training/datasets/Amzn13K/unseen_labels_split6500_2.txt', 'contrastive_learning_samples': 1000, 'cl_min_positive_descs': 1, 'coil_cluster_mapping_path': 'bert_coil_map_dict_lemma255K_isotropic.json', 'model_name_or_path': 'bert-base-uncased', 'config_name': None, 'tokenizer_name': None, 'cache_dir': None, 'use_fast_tokenizer': True, 'model_revision': 'main', 'use_auth_token': False, 'ignore_mismatched_sizes': False, 'negative_sampling': 'none', 'semsup': True, 'label_model_name_or_path': 'prajjwal1/bert-small', 'encoder_model_type': 'bert', 'use_custom_optimizer': 'adamw', 'output_learning_rate': 0.0001, 'arch_type': 2, 'add_label_name': True, 'normalize_embeddings': False, 'tie_weights': False, 'coil': True, 'colbert': False, 'token_dim': 16, 'label_frozen_layers': 2, 'do_train': True, 'do_eval': True, 'do_predict': False, 'per_device_train_batch_size': 1, 'gradient_accumulation_steps': 8, 'per_device_eval_batch_size': 1, 'learning_rate': 5e-05, 'num_train_epochs': 2, 'save_steps': 4900, 'evaluation_strategy': 'steps', 'eval_steps': 3000000, 'fp16': True, 'fp16_opt_level': 'O1', 'lr_scheduler_type': 'linear', 'dataloader_num_workers': 16, 'label_names': ['labels'], 'scenario': 'unseen_labels', 'ddp_find_unused_parameters': False, 'ignore_data_skip': True, 'seed': -1, 'EXP_NAME': 'semsup_descs_100ep_newds_cosine', 'EXP_DESC': 'SemSup Descriptions ran for 100 epochs', 'output_dir': 'demo_tmp'}\n",
|
181 |
+
"--------------------------------------------------------------------------------\n"
|
182 |
+
]
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"name": "stderr",
|
186 |
+
"output_type": "stream",
|
187 |
+
"text": [
|
188 |
+
"Some weights of the model checkpoint at prajjwal1/bert-small were not used when initializing BertModel: ['cls.predictions.bias', 'cls.predictions.decoder.weight', 'cls.seq_relationship.weight', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.decoder.bias', 'cls.seq_relationship.bias', 'cls.predictions.transform.dense.weight', 'cls.predictions.transform.dense.bias']\n",
|
189 |
+
"- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
190 |
+
"- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
191 |
+
"Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertModel: ['cls.predictions.bias', 'cls.predictions.decoder.weight', 'cls.seq_relationship.weight', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.seq_relationship.bias', 'cls.predictions.transform.dense.weight', 'cls.predictions.transform.dense.bias']\n",
|
192 |
+
"- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
193 |
+
"- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n"
|
194 |
+
]
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"name": "stdout",
|
198 |
+
"output_type": "stream",
|
199 |
+
"text": [
|
200 |
+
"Config is BertConfig {\n",
|
201 |
+
" \"_name_or_path\": \"bert-base-uncased\",\n",
|
202 |
+
" \"arch_type\": 2,\n",
|
203 |
+
" \"architectures\": [\n",
|
204 |
+
" \"BertForMaskedLM\"\n",
|
205 |
+
" ],\n",
|
206 |
+
" \"attention_probs_dropout_prob\": 0.1,\n",
|
207 |
+
" \"classifier_dropout\": null,\n",
|
208 |
+
" \"coil\": true,\n",
|
209 |
+
" \"colbert\": false,\n",
|
210 |
+
" \"encoder_model_type\": \"bert\",\n",
|
211 |
+
" \"finetuning_task\": \"amazon13k\",\n",
|
212 |
+
" \"gradient_checkpointing\": false,\n",
|
213 |
+
" \"hidden_act\": \"gelu\",\n",
|
214 |
+
" \"hidden_dropout_prob\": 0.1,\n",
|
215 |
+
" \"hidden_size\": 768,\n",
|
216 |
+
" \"initializer_range\": 0.02,\n",
|
217 |
+
" \"intermediate_size\": 3072,\n",
|
218 |
+
" \"label_hidden_size\": 512,\n",
|
219 |
+
" \"layer_norm_eps\": 1e-12,\n",
|
220 |
+
" \"max_position_embeddings\": 512,\n",
|
221 |
+
" \"model_name_or_path\": \"bert-base-uncased\",\n",
|
222 |
+
" \"model_type\": \"bert\",\n",
|
223 |
+
" \"negative_sampling\": \"none\",\n",
|
224 |
+
" \"num_attention_heads\": 12,\n",
|
225 |
+
" \"num_hidden_layers\": 12,\n",
|
226 |
+
" \"pad_token_id\": 0,\n",
|
227 |
+
" \"position_embedding_type\": \"absolute\",\n",
|
228 |
+
" \"problem_type\": \"multi_label_classification\",\n",
|
229 |
+
" \"semsup\": true,\n",
|
230 |
+
" \"token_dim\": 16,\n",
|
231 |
+
" \"transformers_version\": \"4.20.0\",\n",
|
232 |
+
" \"type_vocab_size\": 2,\n",
|
233 |
+
" \"use_cache\": true,\n",
|
234 |
+
" \"vocab_size\": 30522\n",
|
235 |
+
"}\n",
|
236 |
+
"\n"
|
237 |
+
]
|
238 |
+
}
|
239 |
+
],
|
240 |
+
"source": [
|
241 |
+
"from src import BertForSemanticEmbedding, getLabelModel\n",
|
242 |
+
"from src import DataTrainingArguments, ModelArguments, CustomTrainingArguments, read_yaml_config\n",
|
243 |
+
"from src import dataset_classification_type\n",
|
244 |
+
"from src import SemSupDataset\n",
|
245 |
+
"from transformers import AutoConfig, HfArgumentParser, AutoTokenizer\n",
|
246 |
+
"import torch\n",
|
247 |
+
"\n",
|
248 |
+
"import json\n",
|
249 |
+
"from tqdm import tqdm\n",
|
250 |
+
"\n",
|
251 |
+
"ARGS_FILE = 'configs/ablation_amzn_eda.yml'\n",
|
252 |
+
"\n",
|
253 |
+
"parser = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments))\n",
|
254 |
+
"model_args, data_args, training_args = parser.parse_dict(read_yaml_config(ARGS_FILE, output_dir = 'demo_tmp', extra_args = {}))\n",
|
255 |
+
"\n",
|
256 |
+
"config = AutoConfig.from_pretrained(\n",
|
257 |
+
" model_args.config_name if model_args.config_name else model_args.model_name_or_path,\n",
|
258 |
+
" finetuning_task=data_args.task_name,\n",
|
259 |
+
" cache_dir=model_args.cache_dir,\n",
|
260 |
+
" revision=model_args.model_revision,\n",
|
261 |
+
" use_auth_token=True if model_args.use_auth_token else None,\n",
|
262 |
+
")\n",
|
263 |
+
"\n",
|
264 |
+
"config.model_name_or_path = model_args.model_name_or_path\n",
|
265 |
+
"config.problem_type = dataset_classification_type[data_args.task_name]\n",
|
266 |
+
"config.negative_sampling = model_args.negative_sampling\n",
|
267 |
+
"config.semsup = model_args.semsup\n",
|
268 |
+
"config.encoder_model_type = model_args.encoder_model_type\n",
|
269 |
+
"config.arch_type = model_args.arch_type\n",
|
270 |
+
"config.coil = model_args.coil\n",
|
271 |
+
"config.token_dim = model_args.token_dim\n",
|
272 |
+
"config.colbert = model_args.colbert\n",
|
273 |
+
"\n",
|
274 |
+
"label_model, label_tokenizer = getLabelModel(data_args, model_args)\n",
|
275 |
+
"config.label_hidden_size = label_model.config.hidden_size\n",
|
276 |
+
"model = BertForSemanticEmbedding(config)\n",
|
277 |
+
"model.label_model = label_model\n",
|
278 |
+
"model.label_tokenizer = label_tokenizer\n",
|
279 |
+
"model.config.label2id = {l: i for i, l in enumerate(label_list)}\n",
|
280 |
+
"model.config.id2label = {id: label for label, id in config.label2id.items()}\n",
|
281 |
+
"\n",
|
282 |
+
"tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')"
|
283 |
+
]
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"cell_type": "code",
|
287 |
+
"execution_count": 9,
|
288 |
+
"metadata": {},
|
289 |
+
"outputs": [
|
290 |
+
{
|
291 |
+
"data": {
|
292 |
+
"text/plain": [
|
293 |
+
"BertForSemanticEmbedding(\n",
|
294 |
+
" (encoder): BertModel(\n",
|
295 |
+
" (embeddings): BertEmbeddings(\n",
|
296 |
+
" (word_embeddings): Embedding(30522, 768, padding_idx=0)\n",
|
297 |
+
" (position_embeddings): Embedding(512, 768)\n",
|
298 |
+
" (token_type_embeddings): Embedding(2, 768)\n",
|
299 |
+
" (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
300 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
301 |
+
" )\n",
|
302 |
+
" (encoder): BertEncoder(\n",
|
303 |
+
" (layer): ModuleList(\n",
|
304 |
+
" (0): BertLayer(\n",
|
305 |
+
" (attention): BertAttention(\n",
|
306 |
+
" (self): BertSelfAttention(\n",
|
307 |
+
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
|
308 |
+
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
|
309 |
+
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
|
310 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
311 |
+
" )\n",
|
312 |
+
" (output): BertSelfOutput(\n",
|
313 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
314 |
+
" (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
315 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
316 |
+
" )\n",
|
317 |
+
" )\n",
|
318 |
+
" (intermediate): BertIntermediate(\n",
|
319 |
+
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
|
320 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
321 |
+
" )\n",
|
322 |
+
" (output): BertOutput(\n",
|
323 |
+
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
|
324 |
+
" (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
325 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
326 |
+
" )\n",
|
327 |
+
" )\n",
|
328 |
+
" (1): BertLayer(\n",
|
329 |
+
" (attention): BertAttention(\n",
|
330 |
+
" (self): BertSelfAttention(\n",
|
331 |
+
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
|
332 |
+
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
|
333 |
+
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
|
334 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
335 |
+
" )\n",
|
336 |
+
" (output): BertSelfOutput(\n",
|
337 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
338 |
+
" (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
339 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
340 |
+
" )\n",
|
341 |
+
" )\n",
|
342 |
+
" (intermediate): BertIntermediate(\n",
|
343 |
+
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
|
344 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
345 |
+
" )\n",
|
346 |
+
" (output): BertOutput(\n",
|
347 |
+
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
|
348 |
+
" (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
349 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
350 |
+
" )\n",
|
351 |
+
" )\n",
|
352 |
+
" (2): BertLayer(\n",
|
353 |
+
" (attention): BertAttention(\n",
|
354 |
+
" (self): BertSelfAttention(\n",
|
355 |
+
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
|
356 |
+
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
|
357 |
+
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
|
358 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
359 |
+
" )\n",
|
360 |
+
" (output): BertSelfOutput(\n",
|
361 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
362 |
+
" (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
363 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
364 |
+
" )\n",
|
365 |
+
" )\n",
|
366 |
+
" (intermediate): BertIntermediate(\n",
|
367 |
+
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
|
368 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
369 |
+
" )\n",
|
370 |
+
" (output): BertOutput(\n",
|
371 |
+
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
|
372 |
+
" (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
373 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
374 |
+
" )\n",
|
375 |
+
" )\n",
|
376 |
+
" (3): BertLayer(\n",
|
377 |
+
" (attention): BertAttention(\n",
|
378 |
+
" (self): BertSelfAttention(\n",
|
379 |
+
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
|
380 |
+
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
|
381 |
+
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
|
382 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
383 |
+
" )\n",
|
384 |
+
" (output): BertSelfOutput(\n",
|
385 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
386 |
+
" (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
387 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
388 |
+
" )\n",
|
389 |
+
" )\n",
|
390 |
+
" (intermediate): BertIntermediate(\n",
|
391 |
+
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
|
392 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
393 |
+
" )\n",
|
394 |
+
" (output): BertOutput(\n",
|
395 |
+
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
|
396 |
+
" (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
397 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
398 |
+
" )\n",
|
399 |
+
" )\n",
|
400 |
+
" (4): BertLayer(\n",
|
401 |
+
" (attention): BertAttention(\n",
|
402 |
+
" (self): BertSelfAttention(\n",
|
403 |
+
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
|
404 |
+
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
|
405 |
+
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
|
406 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
407 |
+
" )\n",
|
408 |
+
" (output): BertSelfOutput(\n",
|
409 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
410 |
+
" (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
411 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
412 |
+
" )\n",
|
413 |
+
" )\n",
|
414 |
+
" (intermediate): BertIntermediate(\n",
|
415 |
+
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
|
416 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
417 |
+
" )\n",
|
418 |
+
" (output): BertOutput(\n",
|
419 |
+
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
|
420 |
+
" (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
421 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
422 |
+
" )\n",
|
423 |
+
" )\n",
|
424 |
+
" (5): BertLayer(\n",
|
425 |
+
" (attention): BertAttention(\n",
|
426 |
+
" (self): BertSelfAttention(\n",
|
427 |
+
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
|
428 |
+
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
|
429 |
+
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
|
430 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
431 |
+
" )\n",
|
432 |
+
" (output): BertSelfOutput(\n",
|
433 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
434 |
+
" (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
435 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
436 |
+
" )\n",
|
437 |
+
" )\n",
|
438 |
+
" (intermediate): BertIntermediate(\n",
|
439 |
+
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
|
440 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
441 |
+
" )\n",
|
442 |
+
" (output): BertOutput(\n",
|
443 |
+
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
|
444 |
+
" (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
445 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
446 |
+
" )\n",
|
447 |
+
" )\n",
|
448 |
+
" (6): BertLayer(\n",
|
449 |
+
" (attention): BertAttention(\n",
|
450 |
+
" (self): BertSelfAttention(\n",
|
451 |
+
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
|
452 |
+
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
|
453 |
+
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
|
454 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
455 |
+
" )\n",
|
456 |
+
" (output): BertSelfOutput(\n",
|
457 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
458 |
+
" (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
459 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
460 |
+
" )\n",
|
461 |
+
" )\n",
|
462 |
+
" (intermediate): BertIntermediate(\n",
|
463 |
+
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
|
464 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
465 |
+
" )\n",
|
466 |
+
" (output): BertOutput(\n",
|
467 |
+
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
|
468 |
+
" (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
469 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
470 |
+
" )\n",
|
471 |
+
" )\n",
|
472 |
+
" (7): BertLayer(\n",
|
473 |
+
" (attention): BertAttention(\n",
|
474 |
+
" (self): BertSelfAttention(\n",
|
475 |
+
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
|
476 |
+
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
|
477 |
+
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
|
478 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
479 |
+
" )\n",
|
480 |
+
" (output): BertSelfOutput(\n",
|
481 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
482 |
+
" (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
483 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
484 |
+
" )\n",
|
485 |
+
" )\n",
|
486 |
+
" (intermediate): BertIntermediate(\n",
|
487 |
+
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
|
488 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
489 |
+
" )\n",
|
490 |
+
" (output): BertOutput(\n",
|
491 |
+
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
|
492 |
+
" (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
493 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
494 |
+
" )\n",
|
495 |
+
" )\n",
|
496 |
+
" (8): BertLayer(\n",
|
497 |
+
" (attention): BertAttention(\n",
|
498 |
+
" (self): BertSelfAttention(\n",
|
499 |
+
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
|
500 |
+
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
|
501 |
+
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
|
502 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
503 |
+
" )\n",
|
504 |
+
" (output): BertSelfOutput(\n",
|
505 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
506 |
+
" (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
507 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
508 |
+
" )\n",
|
509 |
+
" )\n",
|
510 |
+
" (intermediate): BertIntermediate(\n",
|
511 |
+
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
|
512 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
513 |
+
" )\n",
|
514 |
+
" (output): BertOutput(\n",
|
515 |
+
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
|
516 |
+
" (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
517 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
518 |
+
" )\n",
|
519 |
+
" )\n",
|
520 |
+
" (9): BertLayer(\n",
|
521 |
+
" (attention): BertAttention(\n",
|
522 |
+
" (self): BertSelfAttention(\n",
|
523 |
+
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
|
524 |
+
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
|
525 |
+
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
|
526 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
527 |
+
" )\n",
|
528 |
+
" (output): BertSelfOutput(\n",
|
529 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
530 |
+
" (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
531 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
532 |
+
" )\n",
|
533 |
+
" )\n",
|
534 |
+
" (intermediate): BertIntermediate(\n",
|
535 |
+
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
|
536 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
537 |
+
" )\n",
|
538 |
+
" (output): BertOutput(\n",
|
539 |
+
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
|
540 |
+
" (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
541 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
542 |
+
" )\n",
|
543 |
+
" )\n",
|
544 |
+
" (10): BertLayer(\n",
|
545 |
+
" (attention): BertAttention(\n",
|
546 |
+
" (self): BertSelfAttention(\n",
|
547 |
+
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
|
548 |
+
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
|
549 |
+
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
|
550 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
551 |
+
" )\n",
|
552 |
+
" (output): BertSelfOutput(\n",
|
553 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
554 |
+
" (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
555 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
556 |
+
" )\n",
|
557 |
+
" )\n",
|
558 |
+
" (intermediate): BertIntermediate(\n",
|
559 |
+
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
|
560 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
561 |
+
" )\n",
|
562 |
+
" (output): BertOutput(\n",
|
563 |
+
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
|
564 |
+
" (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
565 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
566 |
+
" )\n",
|
567 |
+
" )\n",
|
568 |
+
" (11): BertLayer(\n",
|
569 |
+
" (attention): BertAttention(\n",
|
570 |
+
" (self): BertSelfAttention(\n",
|
571 |
+
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
|
572 |
+
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
|
573 |
+
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
|
574 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
575 |
+
" )\n",
|
576 |
+
" (output): BertSelfOutput(\n",
|
577 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
578 |
+
" (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
579 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
580 |
+
" )\n",
|
581 |
+
" )\n",
|
582 |
+
" (intermediate): BertIntermediate(\n",
|
583 |
+
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
|
584 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
585 |
+
" )\n",
|
586 |
+
" (output): BertOutput(\n",
|
587 |
+
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
|
588 |
+
" (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
589 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
590 |
+
" )\n",
|
591 |
+
" )\n",
|
592 |
+
" )\n",
|
593 |
+
" )\n",
|
594 |
+
" (pooler): BertPooler(\n",
|
595 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
596 |
+
" (activation): Tanh()\n",
|
597 |
+
" )\n",
|
598 |
+
" )\n",
|
599 |
+
" (tok_proj): Linear(in_features=768, out_features=16, bias=True)\n",
|
600 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
601 |
+
" (label_projection): Linear(in_features=768, out_features=512, bias=False)\n",
|
602 |
+
" (label_model): BertModel(\n",
|
603 |
+
" (embeddings): BertEmbeddings(\n",
|
604 |
+
" (word_embeddings): Embedding(30522, 512, padding_idx=0)\n",
|
605 |
+
" (position_embeddings): Embedding(512, 512)\n",
|
606 |
+
" (token_type_embeddings): Embedding(2, 512)\n",
|
607 |
+
" (LayerNorm): LayerNorm((512,), eps=1e-12, elementwise_affine=True)\n",
|
608 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
609 |
+
" )\n",
|
610 |
+
" (encoder): BertEncoder(\n",
|
611 |
+
" (layer): ModuleList(\n",
|
612 |
+
" (0): BertLayer(\n",
|
613 |
+
" (attention): BertAttention(\n",
|
614 |
+
" (self): BertSelfAttention(\n",
|
615 |
+
" (query): Linear(in_features=512, out_features=512, bias=True)\n",
|
616 |
+
" (key): Linear(in_features=512, out_features=512, bias=True)\n",
|
617 |
+
" (value): Linear(in_features=512, out_features=512, bias=True)\n",
|
618 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
619 |
+
" )\n",
|
620 |
+
" (output): BertSelfOutput(\n",
|
621 |
+
" (dense): Linear(in_features=512, out_features=512, bias=True)\n",
|
622 |
+
" (LayerNorm): LayerNorm((512,), eps=1e-12, elementwise_affine=True)\n",
|
623 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
624 |
+
" )\n",
|
625 |
+
" )\n",
|
626 |
+
" (intermediate): BertIntermediate(\n",
|
627 |
+
" (dense): Linear(in_features=512, out_features=2048, bias=True)\n",
|
628 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
629 |
+
" )\n",
|
630 |
+
" (output): BertOutput(\n",
|
631 |
+
" (dense): Linear(in_features=2048, out_features=512, bias=True)\n",
|
632 |
+
" (LayerNorm): LayerNorm((512,), eps=1e-12, elementwise_affine=True)\n",
|
633 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
634 |
+
" )\n",
|
635 |
+
" )\n",
|
636 |
+
" (1): BertLayer(\n",
|
637 |
+
" (attention): BertAttention(\n",
|
638 |
+
" (self): BertSelfAttention(\n",
|
639 |
+
" (query): Linear(in_features=512, out_features=512, bias=True)\n",
|
640 |
+
" (key): Linear(in_features=512, out_features=512, bias=True)\n",
|
641 |
+
" (value): Linear(in_features=512, out_features=512, bias=True)\n",
|
642 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
643 |
+
" )\n",
|
644 |
+
" (output): BertSelfOutput(\n",
|
645 |
+
" (dense): Linear(in_features=512, out_features=512, bias=True)\n",
|
646 |
+
" (LayerNorm): LayerNorm((512,), eps=1e-12, elementwise_affine=True)\n",
|
647 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
648 |
+
" )\n",
|
649 |
+
" )\n",
|
650 |
+
" (intermediate): BertIntermediate(\n",
|
651 |
+
" (dense): Linear(in_features=512, out_features=2048, bias=True)\n",
|
652 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
653 |
+
" )\n",
|
654 |
+
" (output): BertOutput(\n",
|
655 |
+
" (dense): Linear(in_features=2048, out_features=512, bias=True)\n",
|
656 |
+
" (LayerNorm): LayerNorm((512,), eps=1e-12, elementwise_affine=True)\n",
|
657 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
658 |
+
" )\n",
|
659 |
+
" )\n",
|
660 |
+
" (2): BertLayer(\n",
|
661 |
+
" (attention): BertAttention(\n",
|
662 |
+
" (self): BertSelfAttention(\n",
|
663 |
+
" (query): Linear(in_features=512, out_features=512, bias=True)\n",
|
664 |
+
" (key): Linear(in_features=512, out_features=512, bias=True)\n",
|
665 |
+
" (value): Linear(in_features=512, out_features=512, bias=True)\n",
|
666 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
667 |
+
" )\n",
|
668 |
+
" (output): BertSelfOutput(\n",
|
669 |
+
" (dense): Linear(in_features=512, out_features=512, bias=True)\n",
|
670 |
+
" (LayerNorm): LayerNorm((512,), eps=1e-12, elementwise_affine=True)\n",
|
671 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
672 |
+
" )\n",
|
673 |
+
" )\n",
|
674 |
+
" (intermediate): BertIntermediate(\n",
|
675 |
+
" (dense): Linear(in_features=512, out_features=2048, bias=True)\n",
|
676 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
677 |
+
" )\n",
|
678 |
+
" (output): BertOutput(\n",
|
679 |
+
" (dense): Linear(in_features=2048, out_features=512, bias=True)\n",
|
680 |
+
" (LayerNorm): LayerNorm((512,), eps=1e-12, elementwise_affine=True)\n",
|
681 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
682 |
+
" )\n",
|
683 |
+
" )\n",
|
684 |
+
" (3): BertLayer(\n",
|
685 |
+
" (attention): BertAttention(\n",
|
686 |
+
" (self): BertSelfAttention(\n",
|
687 |
+
" (query): Linear(in_features=512, out_features=512, bias=True)\n",
|
688 |
+
" (key): Linear(in_features=512, out_features=512, bias=True)\n",
|
689 |
+
" (value): Linear(in_features=512, out_features=512, bias=True)\n",
|
690 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
691 |
+
" )\n",
|
692 |
+
" (output): BertSelfOutput(\n",
|
693 |
+
" (dense): Linear(in_features=512, out_features=512, bias=True)\n",
|
694 |
+
" (LayerNorm): LayerNorm((512,), eps=1e-12, elementwise_affine=True)\n",
|
695 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
696 |
+
" )\n",
|
697 |
+
" )\n",
|
698 |
+
" (intermediate): BertIntermediate(\n",
|
699 |
+
" (dense): Linear(in_features=512, out_features=2048, bias=True)\n",
|
700 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
701 |
+
" )\n",
|
702 |
+
" (output): BertOutput(\n",
|
703 |
+
" (dense): Linear(in_features=2048, out_features=512, bias=True)\n",
|
704 |
+
" (LayerNorm): LayerNorm((512,), eps=1e-12, elementwise_affine=True)\n",
|
705 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
706 |
+
" )\n",
|
707 |
+
" )\n",
|
708 |
+
" )\n",
|
709 |
+
" )\n",
|
710 |
+
" (pooler): BertPooler(\n",
|
711 |
+
" (dense): Linear(in_features=512, out_features=512, bias=True)\n",
|
712 |
+
" (activation): Tanh()\n",
|
713 |
+
" )\n",
|
714 |
+
" )\n",
|
715 |
+
")"
|
716 |
+
]
|
717 |
+
},
|
718 |
+
"execution_count": 9,
|
719 |
+
"metadata": {},
|
720 |
+
"output_type": "execute_result"
|
721 |
+
}
|
722 |
+
],
|
723 |
+
"source": [
|
724 |
+
"model.to(device)\n",
|
725 |
+
"model.eval()\n",
|
726 |
+
"torch.set_grad_enabled(False)"
|
727 |
+
]
|
728 |
+
},
|
729 |
+
{
|
730 |
+
"cell_type": "code",
|
731 |
+
"execution_count": 65,
|
732 |
+
"metadata": {},
|
733 |
+
"outputs": [
|
734 |
+
{
|
735 |
+
"data": {
|
736 |
+
"text/plain": [
|
737 |
+
"<All keys matched successfully>"
|
738 |
+
]
|
739 |
+
},
|
740 |
+
"execution_count": 65,
|
741 |
+
"metadata": {},
|
742 |
+
"output_type": "execute_result"
|
743 |
+
}
|
744 |
+
],
|
745 |
+
"source": [
|
746 |
+
"model.load_state_dict(torch.load('ckpt/Amzn13K/amzn_main_model.bin', map_location = device))"
|
747 |
+
]
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"cell_type": "code",
|
751 |
+
"execution_count": 88,
|
752 |
+
"metadata": {},
|
753 |
+
"outputs": [],
|
754 |
+
"source": [
|
755 |
+
"text = '''SanDisk Cruzer Blade 32GB USB Flash Drive\\nUltra-compact and portable USB flash drive,Capless design\n",
|
756 |
+
"Share your photos, videos, songs and other files between computers with ease,care number:18001205899/18004195592\n",
|
757 |
+
"Protect your private files with included SanDisk SecureAccess software\n",
|
758 |
+
"Includes added protection of secure online backup (up to 2GB optionally available) offered by YuuWaa\n",
|
759 |
+
"Password-protect your sensitive files. Customer care:IndiaSupport@sandisk.com\n",
|
760 |
+
"Importer Details:Rashi Peripherals Pvt. Ltd. Rashi Complex,A Building,Survey186,Dongaripada,Poman Village,Vasai Bhiwandi Road, Dist. Thane,Maharastra 401208, India\n",
|
761 |
+
"Share your work files between computers with ease\n",
|
762 |
+
"Manufacturer Name & Address: SanDisk International LTD, C/O Unit 100, Airside Business Park, Lakeshore Drive, Swords, Co Dublin, Ireland.\n",
|
763 |
+
"Consumer Complaint Details: indiasupport@sandisk.com/18001022055'''"
|
764 |
+
]
|
765 |
+
},
|
766 |
+
{
|
767 |
+
"cell_type": "code",
|
768 |
+
"execution_count": 89,
|
769 |
+
"metadata": {},
|
770 |
+
"outputs": [],
|
771 |
+
"source": [
|
772 |
+
"item = tokenizer(text, padding='max_length', max_length=data_args.max_seq_length, truncation=True)\n",
|
773 |
+
"item = {k:torch.tensor(v, device = device).unsqueeze(0) for k,v in item.items()}\n",
|
774 |
+
"\n",
|
775 |
+
"outputs_doc, logits = model.forward_input_encoder(**item)\n",
|
776 |
+
"doc_reps = model.tok_proj(outputs_doc.last_hidden_state)\n",
|
777 |
+
"\n",
|
778 |
+
"input_ids = torch.tensor([coil_cluster_map[str(x.item())] for x in item['input_ids'][0]]).to(device).unsqueeze(0)\n",
|
779 |
+
"all_logits = []\n",
|
780 |
+
"for adi, ada, alr, ale in zip(all_desc_input_ids, all_desc_attention_mask, all_lab_reps, all_label_embeddings):\n",
|
781 |
+
" all_logits.append(coil_fast_eval_forward(input_ids, doc_reps, logits, adi, ada, alr, ale))\n",
|
782 |
+
"\n",
|
783 |
+
"final_logits = sum([expit(x.cpu()) for x in all_logits]) / len(all_logits)\n",
|
784 |
+
"\n",
|
785 |
+
"outs = torch.topk(final_logits, k = 5)\n",
|
786 |
+
"preds_dic = dict()\n",
|
787 |
+
"for i,v in zip(outs.indices, outs.values):\n",
|
788 |
+
" preds_dic[label_list[i]] = v.item()"
|
789 |
+
]
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"cell_type": "code",
|
793 |
+
"execution_count": 90,
|
794 |
+
"metadata": {},
|
795 |
+
"outputs": [
|
796 |
+
{
|
797 |
+
"data": {
|
798 |
+
"text/plain": [
|
799 |
+
"{'electronics': 0.9989226460456848,\n",
|
800 |
+
" 'computers & accessories': 0.981508731842041,\n",
|
801 |
+
" 'computer components': 0.9518740177154541,\n",
|
802 |
+
" 'computer accessories': 0.7639468312263489,\n",
|
803 |
+
" 'hardware': 0.6584190726280212}"
|
804 |
+
]
|
805 |
+
},
|
806 |
+
"execution_count": 90,
|
807 |
+
"metadata": {},
|
808 |
+
"output_type": "execute_result"
|
809 |
+
}
|
810 |
+
],
|
811 |
+
"source": [
|
812 |
+
"preds_dic"
|
813 |
+
]
|
814 |
+
},
|
815 |
+
{
|
816 |
+
"cell_type": "code",
|
817 |
+
"execution_count": null,
|
818 |
+
"metadata": {},
|
819 |
+
"outputs": [],
|
820 |
+
"source": []
|
821 |
+
},
|
822 |
+
{
|
823 |
+
"cell_type": "code",
|
824 |
+
"execution_count": 78,
|
825 |
+
"metadata": {},
|
826 |
+
"outputs": [
|
827 |
+
{
|
828 |
+
"data": {
|
829 |
+
"text/plain": [
|
830 |
+
"torch.Size([13330])"
|
831 |
+
]
|
832 |
+
},
|
833 |
+
"execution_count": 78,
|
834 |
+
"metadata": {},
|
835 |
+
"output_type": "execute_result"
|
836 |
+
}
|
837 |
+
],
|
838 |
+
"source": [
|
839 |
+
"final_logits.shape"
|
840 |
+
]
|
841 |
+
},
|
842 |
+
{
|
843 |
+
"cell_type": "code",
|
844 |
+
"execution_count": null,
|
845 |
+
"metadata": {},
|
846 |
+
"outputs": [],
|
847 |
+
"source": []
|
848 |
+
}
|
849 |
+
],
|
850 |
+
"metadata": {
|
851 |
+
"interpreter": {
|
852 |
+
"hash": "90fcbf6f06d9a30c70fdaff45e14c5534421a599dc22a7267c486c9cb67dea6d"
|
853 |
+
},
|
854 |
+
"kernelspec": {
|
855 |
+
"display_name": "Python 3.9.12 ('base')",
|
856 |
+
"language": "python",
|
857 |
+
"name": "python3"
|
858 |
+
},
|
859 |
+
"language_info": {
|
860 |
+
"codemirror_mode": {
|
861 |
+
"name": "ipython",
|
862 |
+
"version": 3
|
863 |
+
},
|
864 |
+
"file_extension": ".py",
|
865 |
+
"mimetype": "text/x-python",
|
866 |
+
"name": "python",
|
867 |
+
"nbconvert_exporter": "python",
|
868 |
+
"pygments_lexer": "ipython3",
|
869 |
+
"version": "3.9.12"
|
870 |
+
},
|
871 |
+
"orig_nbformat": 4
|
872 |
+
},
|
873 |
+
"nbformat": 4,
|
874 |
+
"nbformat_minor": 2
|
875 |
+
}
|
cleaned_code/bert_coil_map_dict_lemma255K_isotropic.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
cleaned_code/ckpt/Amzn13K/amzn_main_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0899b193b49dc3e8acf2caa984fbaee1520933bbc2f61cbb3e594363a702708
|
3 |
+
size 554726619
|
cleaned_code/configs/PredsRemover.ipynb
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import os\n",
|
10 |
+
"import json\n",
|
11 |
+
"from os.path import join"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "code",
|
16 |
+
"execution_count": 2,
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"OUT_DIR = 'output/'\n",
|
21 |
+
"EXP_DIR = join(OUT_DIR, 'semsup_descs_amzn13k_curie_nocoil', 'predictions')"
|
22 |
+
]
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"cell_type": "code",
|
26 |
+
"execution_count": 6,
|
27 |
+
"metadata": {},
|
28 |
+
"outputs": [
|
29 |
+
{
|
30 |
+
"name": "stdout",
|
31 |
+
"output_type": "stream",
|
32 |
+
"text": [
|
33 |
+
"/n/fs/nlp-pranjal/SemSup-LMLC/training\n"
|
34 |
+
]
|
35 |
+
}
|
36 |
+
],
|
37 |
+
"source": [
|
38 |
+
"%cd .."
|
39 |
+
]
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"cell_type": "code",
|
43 |
+
"execution_count": 7,
|
44 |
+
"metadata": {},
|
45 |
+
"outputs": [],
|
46 |
+
"source": [
|
47 |
+
"files = dict()\n",
|
48 |
+
"for file in os.listdir(EXP_DIR):\n",
|
49 |
+
" t = float(file.split('_')[-1].replace('.pkl',''))\n",
|
50 |
+
" if t not in files:\n",
|
51 |
+
" files[t] = []\n",
|
52 |
+
" files[t] += [join(EXP_DIR, file)]"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"cell_type": "code",
|
57 |
+
"execution_count": 8,
|
58 |
+
"metadata": {},
|
59 |
+
"outputs": [
|
60 |
+
{
|
61 |
+
"data": {
|
62 |
+
"text/plain": [
|
63 |
+
"21.792958695441484"
|
64 |
+
]
|
65 |
+
},
|
66 |
+
"execution_count": 8,
|
67 |
+
"metadata": {},
|
68 |
+
"output_type": "execute_result"
|
69 |
+
}
|
70 |
+
],
|
71 |
+
"source": [
|
72 |
+
"import itertools\n",
|
73 |
+
"tsize = 0\n",
|
74 |
+
"for file in itertools.chain(*files.values()):\n",
|
75 |
+
" tsize += os.path.getsize(file)\n",
|
76 |
+
"tsize/ (1024**3)"
|
77 |
+
]
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"cell_type": "code",
|
81 |
+
"execution_count": 9,
|
82 |
+
"metadata": {},
|
83 |
+
"outputs": [],
|
84 |
+
"source": [
|
85 |
+
"files = {k:files[k] for k in sorted(files.keys())}"
|
86 |
+
]
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"cell_type": "code",
|
90 |
+
"execution_count": 10,
|
91 |
+
"metadata": {},
|
92 |
+
"outputs": [
|
93 |
+
{
|
94 |
+
"data": {
|
95 |
+
"text/plain": [
|
96 |
+
"10.170047391206026"
|
97 |
+
]
|
98 |
+
},
|
99 |
+
"execution_count": 10,
|
100 |
+
"metadata": {},
|
101 |
+
"output_type": "execute_result"
|
102 |
+
}
|
103 |
+
],
|
104 |
+
"source": [
|
105 |
+
"import random\n",
|
106 |
+
"tsize = 0\n",
|
107 |
+
"for k in sorted(list(files.keys()))[10:]:\n",
|
108 |
+
" if random.random() > 0.6:\n",
|
109 |
+
" continue\n",
|
110 |
+
" for f in files[k]:\n",
|
111 |
+
" tsize += os.path.getsize(f)\n",
|
112 |
+
" os.remove(f)\n",
|
113 |
+
"tsize/ (1024**3)"
|
114 |
+
]
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"cell_type": "code",
|
118 |
+
"execution_count": null,
|
119 |
+
"metadata": {},
|
120 |
+
"outputs": [],
|
121 |
+
"source": []
|
122 |
+
}
|
123 |
+
],
|
124 |
+
"metadata": {
|
125 |
+
"interpreter": {
|
126 |
+
"hash": "90fcbf6f06d9a30c70fdaff45e14c5534421a599dc22a7267c486c9cb67dea6d"
|
127 |
+
},
|
128 |
+
"kernelspec": {
|
129 |
+
"display_name": "Python 3.9.12 ('base')",
|
130 |
+
"language": "python",
|
131 |
+
"name": "python3"
|
132 |
+
},
|
133 |
+
"language_info": {
|
134 |
+
"codemirror_mode": {
|
135 |
+
"name": "ipython",
|
136 |
+
"version": 3
|
137 |
+
},
|
138 |
+
"file_extension": ".py",
|
139 |
+
"mimetype": "text/x-python",
|
140 |
+
"name": "python",
|
141 |
+
"nbconvert_exporter": "python",
|
142 |
+
"pygments_lexer": "ipython3",
|
143 |
+
"version": "3.9.12"
|
144 |
+
},
|
145 |
+
"orig_nbformat": 4
|
146 |
+
},
|
147 |
+
"nbformat": 4,
|
148 |
+
"nbformat_minor": 2
|
149 |
+
}
|
cleaned_code/configs/ablation_amzn_1_coil.yml
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
EXP_NAME: "semsup_descs_100ep_newds_cosine"
|
3 |
+
EXP_DESC: "SemSup Descriptions ran for 100 epochs"
|
4 |
+
|
5 |
+
DATA:
|
6 |
+
task_name: amazon13k
|
7 |
+
dataset_name: amazon13k
|
8 |
+
dataset_config_name: null
|
9 |
+
max_seq_length: 160
|
10 |
+
overwrite_output_dir: false # Set to false, if using one_hour_job
|
11 |
+
overwrite_cache: false
|
12 |
+
pad_to_max_length: true
|
13 |
+
load_from_local: true
|
14 |
+
max_train_samples: null
|
15 |
+
max_eval_samples: null
|
16 |
+
max_predict_samples: null
|
17 |
+
train_file: datasets/Amzn13K/train_split6500_2.jsonl
|
18 |
+
validation_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
19 |
+
test_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
20 |
+
label_max_seq_length: 160
|
21 |
+
# descriptions_file: datasets/Amzn13K/amzn_curie_descsriptions.json
|
22 |
+
descriptions_file: datasets/Amzn13K/heir_withdescriptions_v3_v3_unseen_final.json
|
23 |
+
test_descriptions_file: datasets/Amzn13K/heir_withdescriptions_v3_v3.json
|
24 |
+
|
25 |
+
all_labels : datasets/Amzn13K/all_labels.txt
|
26 |
+
test_labels: datasets/Amzn13K/unseen_labels_split6500_2.txt
|
27 |
+
|
28 |
+
contrastive_learning_samples: 1000
|
29 |
+
cl_min_positive_descs: 1
|
30 |
+
# bm_short_file: datasets/eurlex4.3k/train_bmshort.txt
|
31 |
+
# ignore_pos_labels_file: datasets/Amzn13K/ignore_train_split6500_fs5.txt
|
32 |
+
coil_cluster_mapping_path: bert_coil_map_dict_lemma255K_isotropic.json
|
33 |
+
|
34 |
+
MODEL:
|
35 |
+
model_name_or_path: bert-base-uncased
|
36 |
+
# pretrained_model_path: output/semsup_descs_amzn13k_web_6500_small/checkpoint-20000/pytorch_model.bin
|
37 |
+
config_name: null
|
38 |
+
tokenizer_name: null
|
39 |
+
cache_dir: null
|
40 |
+
use_fast_tokenizer: true
|
41 |
+
model_revision: main
|
42 |
+
use_auth_token: false
|
43 |
+
ignore_mismatched_sizes: false
|
44 |
+
negative_sampling: "none"
|
45 |
+
semsup: true
|
46 |
+
# label_model_name_or_path: bert-base-uncased # prajjwal1/bert-small
|
47 |
+
label_model_name_or_path: prajjwal1/bert-small
|
48 |
+
encoder_model_type: bert
|
49 |
+
use_custom_optimizer: adamw
|
50 |
+
output_learning_rate: 1.e-4
|
51 |
+
arch_type : 2
|
52 |
+
add_label_name: true
|
53 |
+
normalize_embeddings: false
|
54 |
+
tie_weights: false
|
55 |
+
coil: false
|
56 |
+
colbert: false
|
57 |
+
# use_precomputed_embeddings: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_embs_bert_9_96.npy
|
58 |
+
token_dim: 16
|
59 |
+
label_frozen_layers: 2
|
60 |
+
|
61 |
+
TRAINING:
|
62 |
+
do_train: true
|
63 |
+
do_eval: true
|
64 |
+
do_predict: false
|
65 |
+
per_device_train_batch_size: 1
|
66 |
+
gradient_accumulation_steps: 8
|
67 |
+
per_device_eval_batch_size: 1
|
68 |
+
learning_rate: 5.e-5 # Will point to input encoder lr, if user_custom_optimizer is False
|
69 |
+
num_train_epochs: 2
|
70 |
+
save_steps: 4900
|
71 |
+
evaluation_strategy: steps
|
72 |
+
eval_steps: 3000000
|
73 |
+
fp16: true
|
74 |
+
fp16_opt_level: O1
|
75 |
+
lr_scheduler_type: "linear" # defaults to 'linear'
|
76 |
+
dataloader_num_workers: 16
|
77 |
+
label_names: [labels]
|
78 |
+
scenario: "unseen_labels"
|
79 |
+
|
80 |
+
ddp_find_unused_parameters: false
|
81 |
+
max_eval_samples: 15000
|
82 |
+
ignore_data_skip: true
|
83 |
+
# one_hour_job: true
|
84 |
+
seed: -1
|
85 |
+
|
cleaned_code/configs/ablation_amzn_1_descs.yml
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
EXP_NAME: "semsup_descs_100ep_newds_cosine"
|
3 |
+
EXP_DESC: "SemSup Descriptions ran for 100 epochs"
|
4 |
+
|
5 |
+
DATA:
|
6 |
+
task_name: amazon13k
|
7 |
+
dataset_name: amazon13k
|
8 |
+
dataset_config_name: null
|
9 |
+
max_seq_length: 160
|
10 |
+
overwrite_output_dir: true # Set to false, if using one_hour_job
|
11 |
+
overwrite_cache: false
|
12 |
+
pad_to_max_length: true
|
13 |
+
load_from_local: true
|
14 |
+
max_train_samples: null
|
15 |
+
max_eval_samples: null
|
16 |
+
max_predict_samples: null
|
17 |
+
train_file: datasets/Amzn13K/train_split6500_2.jsonl
|
18 |
+
validation_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
19 |
+
test_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
20 |
+
|
21 |
+
# validation_file: datasets/Amzn13K/test.jsonl
|
22 |
+
# test_file: datasets/Amzn13K/test.jsonl
|
23 |
+
label_max_seq_length: 64
|
24 |
+
# descriptions_file: datasets/Amzn13K/amzn_curie_descsriptions.json
|
25 |
+
descriptions_file: datasets/Amzn13K/heir_withoutdescriptions_v3_v3_unseen.json
|
26 |
+
test_descriptions_file: datasets/Amzn13K/heir_withoutdescriptions_v3_v3.json
|
27 |
+
|
28 |
+
all_labels : datasets/Amzn13K/all_labels.txt
|
29 |
+
# test_labels : datasets/Amzn13K/all_labels.txt
|
30 |
+
test_labels: datasets/Amzn13K/unseen_labels_split6500_2.txt
|
31 |
+
|
32 |
+
contrastive_learning_samples: 1000
|
33 |
+
cl_min_positive_descs: 1
|
34 |
+
# bm_short_file: datasets/eurlex4.3k/train_bmshort.txt
|
35 |
+
# ignore_pos_labels_file: datasets/Amzn13K/ignore_train_split6500_fs5.txt
|
36 |
+
coil_cluster_mapping_path: bert_coil_map_dict_lemma255K_isotropic.json
|
37 |
+
|
38 |
+
MODEL:
|
39 |
+
model_name_or_path: bert-base-uncased
|
40 |
+
# pretrained_model_path: output/ablation_amzn_1_descs/checkpoint-21000/pytorch_model.bin
|
41 |
+
config_name: null
|
42 |
+
tokenizer_name: null
|
43 |
+
cache_dir: null
|
44 |
+
use_fast_tokenizer: true
|
45 |
+
model_revision: main
|
46 |
+
use_auth_token: false
|
47 |
+
ignore_mismatched_sizes: false
|
48 |
+
negative_sampling: "none"
|
49 |
+
semsup: true
|
50 |
+
# label_model_name_or_path: bert-base-uncased # prajjwal1/bert-small
|
51 |
+
label_model_name_or_path: prajjwal1/bert-small
|
52 |
+
encoder_model_type: bert
|
53 |
+
use_custom_optimizer: adamw
|
54 |
+
output_learning_rate: 1.e-4
|
55 |
+
arch_type : 2
|
56 |
+
add_label_name: true
|
57 |
+
normalize_embeddings: false
|
58 |
+
tie_weights: false
|
59 |
+
coil: true
|
60 |
+
colbert: false
|
61 |
+
# use_precomputed_embeddings: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_embs_bert_9_96.npy
|
62 |
+
token_dim: 16
|
63 |
+
label_frozen_layers: 2
|
64 |
+
|
65 |
+
TRAINING:
|
66 |
+
do_train: false
|
67 |
+
do_eval: true
|
68 |
+
do_predict: false
|
69 |
+
per_device_train_batch_size: 4
|
70 |
+
gradient_accumulation_steps: 4
|
71 |
+
per_device_eval_batch_size: 1
|
72 |
+
learning_rate: 5.e-5 # Will point to input encoder lr, if user_custom_optimizer is False
|
73 |
+
num_train_epochs: 2
|
74 |
+
save_steps: 4900
|
75 |
+
evaluation_strategy: steps
|
76 |
+
eval_steps: 3000000
|
77 |
+
fp16: true
|
78 |
+
fp16_opt_level: O1
|
79 |
+
lr_scheduler_type: "linear" # defaults to 'linear'
|
80 |
+
dataloader_num_workers: 16
|
81 |
+
label_names: [labels]
|
82 |
+
scenario: "unseen_labels"
|
83 |
+
|
84 |
+
ddp_find_unused_parameters: false
|
85 |
+
max_eval_samples: 15000
|
86 |
+
ignore_data_skip: true
|
87 |
+
# one_hour_job: true
|
88 |
+
seed: -1
|
89 |
+
|
cleaned_code/configs/ablation_amzn_1_hier.yml
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
EXP_NAME: "semsup_descs_100ep_newds_cosine"
|
3 |
+
EXP_DESC: "SemSup Descriptions ran for 100 epochs"
|
4 |
+
|
5 |
+
DATA:
|
6 |
+
task_name: amazon13k
|
7 |
+
dataset_name: amazon13k
|
8 |
+
dataset_config_name: null
|
9 |
+
max_seq_length: 160
|
10 |
+
overwrite_output_dir: true # Set to false, if using one_hour_job
|
11 |
+
overwrite_cache: false
|
12 |
+
pad_to_max_length: true
|
13 |
+
load_from_local: true
|
14 |
+
max_train_samples: null
|
15 |
+
max_eval_samples: null
|
16 |
+
max_predict_samples: null
|
17 |
+
train_file: datasets/Amzn13K/train_split6500_2.jsonl
|
18 |
+
validation_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
19 |
+
test_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
20 |
+
label_max_seq_length: 96
|
21 |
+
# descriptions_file: datasets/Amzn13K/amzn_curie_descsriptions.json
|
22 |
+
descriptions_file: datasets/Amzn13K/amzn_descs_refined_v3_v3.json
|
23 |
+
test_descriptions_file: datasets/Amzn13K/amzn_descs_refined_v3_v3.json
|
24 |
+
|
25 |
+
all_labels : datasets/Amzn13K/all_labels.txt
|
26 |
+
test_labels: datasets/Amzn13K/unseen_labels_split6500_2.txt
|
27 |
+
|
28 |
+
contrastive_learning_samples: 1000
|
29 |
+
cl_min_positive_descs: 1
|
30 |
+
# bm_short_file: datasets/eurlex4.3k/train_bmshort.txt
|
31 |
+
# ignore_pos_labels_file: datasets/Amzn13K/ignore_train_split6500_fs5.txt
|
32 |
+
coil_cluster_mapping_path: bert_coil_map_dict_lemma255K_isotropic.json
|
33 |
+
|
34 |
+
MODEL:
|
35 |
+
model_name_or_path: bert-base-uncased
|
36 |
+
# pretrained_model_path: output/semsup_descs_amzn13k_web_6500_small/checkpoint-20000/pytorch_model.bin
|
37 |
+
config_name: null
|
38 |
+
tokenizer_name: null
|
39 |
+
cache_dir: null
|
40 |
+
use_fast_tokenizer: true
|
41 |
+
model_revision: main
|
42 |
+
use_auth_token: false
|
43 |
+
ignore_mismatched_sizes: false
|
44 |
+
negative_sampling: "none"
|
45 |
+
semsup: true
|
46 |
+
# label_model_name_or_path: bert-base-uncased # prajjwal1/bert-small
|
47 |
+
label_model_name_or_path: prajjwal1/bert-small
|
48 |
+
encoder_model_type: bert
|
49 |
+
use_custom_optimizer: adamw
|
50 |
+
output_learning_rate: 1.e-4
|
51 |
+
arch_type : 2
|
52 |
+
add_label_name: true
|
53 |
+
normalize_embeddings: false
|
54 |
+
tie_weights: false
|
55 |
+
coil: true
|
56 |
+
colbert: false
|
57 |
+
# use_precomputed_embeddings: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_embs_bert_9_96.npy
|
58 |
+
token_dim: 16
|
59 |
+
label_frozen_layers: 2
|
60 |
+
|
61 |
+
TRAINING:
|
62 |
+
do_train: true
|
63 |
+
do_eval: true
|
64 |
+
do_predict: false
|
65 |
+
per_device_train_batch_size: 2
|
66 |
+
gradient_accumulation_steps: 8
|
67 |
+
per_device_eval_batch_size: 1
|
68 |
+
learning_rate: 5.e-5 # Will point to input encoder lr, if user_custom_optimizer is False
|
69 |
+
num_train_epochs: 2
|
70 |
+
save_steps: 4900
|
71 |
+
evaluation_strategy: steps
|
72 |
+
eval_steps: 3000000
|
73 |
+
fp16: true
|
74 |
+
fp16_opt_level: O1
|
75 |
+
lr_scheduler_type: "linear" # defaults to 'linear'
|
76 |
+
dataloader_num_workers: 16
|
77 |
+
label_names: [labels]
|
78 |
+
scenario: "unseen_labels"
|
79 |
+
|
80 |
+
ddp_find_unused_parameters: false
|
81 |
+
max_eval_samples: 15000
|
82 |
+
ignore_data_skip: true
|
83 |
+
# one_hour_job: true
|
84 |
+
seed: -1
|
85 |
+
|
cleaned_code/configs/ablation_amzn_1_relax.yml
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
EXP_NAME: "semsup_descs_100ep_newds_cosine"
|
3 |
+
EXP_DESC: "SemSup Descriptions ran for 100 epochs"
|
4 |
+
|
5 |
+
DATA:
|
6 |
+
task_name: amazon13k
|
7 |
+
dataset_name: amazon13k
|
8 |
+
dataset_config_name: null
|
9 |
+
max_seq_length: 160
|
10 |
+
overwrite_output_dir: false # Set to false, if using one_hour_job
|
11 |
+
overwrite_cache: false
|
12 |
+
pad_to_max_length: true
|
13 |
+
load_from_local: true
|
14 |
+
max_train_samples: null
|
15 |
+
max_eval_samples: null
|
16 |
+
max_predict_samples: null
|
17 |
+
train_file: datasets/Amzn13K/train_split6500_2.jsonl
|
18 |
+
validation_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
19 |
+
test_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
20 |
+
label_max_seq_length: 160
|
21 |
+
# descriptions_file: datasets/Amzn13K/amzn_curie_descsriptions.json
|
22 |
+
descriptions_file: datasets/Amzn13K/heir_withdescriptions_v3_v3_unseen_final.json
|
23 |
+
test_descriptions_file: datasets/Amzn13K/heir_withdescriptions_v3_v3.json
|
24 |
+
|
25 |
+
all_labels : datasets/Amzn13K/all_labels.txt
|
26 |
+
test_labels: datasets/Amzn13K/unseen_labels_split6500_2.txt
|
27 |
+
|
28 |
+
contrastive_learning_samples: 1000
|
29 |
+
cl_min_positive_descs: 1
|
30 |
+
# bm_short_file: datasets/eurlex4.3k/train_bmshort.txt
|
31 |
+
# ignore_pos_labels_file: datasets/Amzn13K/ignore_train_split6500_fs5.txt
|
32 |
+
# coil_cluster_mapping_path: bert_coil_map_dict_lemma255K_isotropic.json
|
33 |
+
|
34 |
+
MODEL:
|
35 |
+
model_name_or_path: bert-base-uncased
|
36 |
+
# pretrained_model_path: output/semsup_descs_amzn13k_web_6500_small/checkpoint-20000/pytorch_model.bin
|
37 |
+
config_name: null
|
38 |
+
tokenizer_name: null
|
39 |
+
cache_dir: null
|
40 |
+
use_fast_tokenizer: true
|
41 |
+
model_revision: main
|
42 |
+
use_auth_token: false
|
43 |
+
ignore_mismatched_sizes: false
|
44 |
+
negative_sampling: "none"
|
45 |
+
semsup: true
|
46 |
+
# label_model_name_or_path: bert-base-uncased # prajjwal1/bert-small
|
47 |
+
label_model_name_or_path: prajjwal1/bert-small
|
48 |
+
encoder_model_type: bert
|
49 |
+
use_custom_optimizer: adamw
|
50 |
+
output_learning_rate: 1.e-4
|
51 |
+
arch_type : 2
|
52 |
+
add_label_name: true
|
53 |
+
normalize_embeddings: false
|
54 |
+
tie_weights: false
|
55 |
+
coil: true
|
56 |
+
colbert: false
|
57 |
+
# use_precomputed_embeddings: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_embs_bert_9_96.npy
|
58 |
+
token_dim: 16
|
59 |
+
label_frozen_layers: 2
|
60 |
+
|
61 |
+
TRAINING:
|
62 |
+
do_train: true
|
63 |
+
do_eval: true
|
64 |
+
do_predict: false
|
65 |
+
per_device_train_batch_size: 1
|
66 |
+
gradient_accumulation_steps: 8
|
67 |
+
per_device_eval_batch_size: 1
|
68 |
+
learning_rate: 5.e-5 # Will point to input encoder lr, if user_custom_optimizer is False
|
69 |
+
num_train_epochs: 2
|
70 |
+
save_steps: 4900
|
71 |
+
evaluation_strategy: steps
|
72 |
+
eval_steps: 3000000
|
73 |
+
fp16: true
|
74 |
+
fp16_opt_level: O1
|
75 |
+
lr_scheduler_type: "linear" # defaults to 'linear'
|
76 |
+
dataloader_num_workers: 16
|
77 |
+
label_names: [labels]
|
78 |
+
scenario: "unseen_labels"
|
79 |
+
|
80 |
+
ddp_find_unused_parameters: false
|
81 |
+
max_eval_samples: 15000
|
82 |
+
ignore_data_skip: true
|
83 |
+
# one_hour_job: true
|
84 |
+
seed: -1
|
85 |
+
|
86 |
+
|
cleaned_code/configs/ablation_amzn_eda.yml
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
DATA:
|
2 |
+
task_name: amazon13k
|
3 |
+
dataset_name: amazon13k
|
4 |
+
dataset_config_name: null
|
5 |
+
max_seq_length: 160
|
6 |
+
overwrite_output_dir: false # Set to false, if using one_hour_job
|
7 |
+
overwrite_cache: false
|
8 |
+
pad_to_max_length: true
|
9 |
+
load_from_local: true
|
10 |
+
max_train_samples: null
|
11 |
+
max_eval_samples: null
|
12 |
+
max_predict_samples: null
|
13 |
+
train_file: /n/fs/nlp-pranjal/SemSup-LMLC/training/datasets/Amzn13K/train_split6500_2.jsonl
|
14 |
+
validation_file: /n/fs/nlp-pranjal/SemSup-LMLC/training/datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
15 |
+
test_file: /n/fs/nlp-pranjal/SemSup-LMLC/training/datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
16 |
+
label_max_seq_length: 160
|
17 |
+
|
18 |
+
descriptions_file: /n/fs/nlp-pranjal/SemSup-LMLC/training/datasets/Amzn13K/heir_withdescriptions_v3_v3_unseen_edaaug.json
|
19 |
+
test_descriptions_file: /n/fs/nlp-pranjal/SemSup-LMLC/training/datasets/Amzn13K/heir_withdescriptions_v3_v3.json
|
20 |
+
|
21 |
+
all_labels : /n/fs/nlp-pranjal/SemSup-LMLC/training/datasets/Amzn13K/all_labels.txt
|
22 |
+
test_labels: /n/fs/nlp-pranjal/SemSup-LMLC/training/datasets/Amzn13K/unseen_labels_split6500_2.txt
|
23 |
+
|
24 |
+
contrastive_learning_samples: 1000
|
25 |
+
cl_min_positive_descs: 1
|
26 |
+
# bm_short_file: /n/fs/nlp-pranjal/SemSup-LMLC/training/datasets/eurlex4.3k/train_bmshort.txt
|
27 |
+
# ignore_pos_labels_file: /n/fs/nlp-pranjal/SemSup-LMLC/training/datasets/Amzn13K/ignore_train_split6500_fs5.txt
|
28 |
+
coil_cluster_mapping_path: bert_coil_map_dict_lemma255K_isotropic.json
|
29 |
+
|
30 |
+
MODEL:
|
31 |
+
model_name_or_path: bert-base-uncased
|
32 |
+
# pretrained_model_path: output/semsup_descs_amzn13k_web_6500_small/checkpoint-20000/pytorch_model.bin
|
33 |
+
config_name: null
|
34 |
+
tokenizer_name: null
|
35 |
+
cache_dir: null
|
36 |
+
use_fast_tokenizer: true
|
37 |
+
model_revision: main
|
38 |
+
use_auth_token: false
|
39 |
+
ignore_mismatched_sizes: false
|
40 |
+
negative_sampling: "none"
|
41 |
+
semsup: true
|
42 |
+
# label_model_name_or_path: bert-base-uncased # prajjwal1/bert-small
|
43 |
+
label_model_name_or_path: prajjwal1/bert-small
|
44 |
+
encoder_model_type: bert
|
45 |
+
use_custom_optimizer: adamw
|
46 |
+
output_learning_rate: 1.e-4
|
47 |
+
arch_type : 2
|
48 |
+
add_label_name: true
|
49 |
+
normalize_embeddings: false
|
50 |
+
tie_weights: false
|
51 |
+
coil: true
|
52 |
+
colbert: false
|
53 |
+
# use_precomputed_embeddings: /n/fs/nlp-pranjal/SemSup-LMLC/training/datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_embs_bert_9_96.npy
|
54 |
+
token_dim: 16
|
55 |
+
label_frozen_layers: 2
|
56 |
+
|
57 |
+
TRAINING:
|
58 |
+
do_train: true
|
59 |
+
do_eval: true
|
60 |
+
do_predict: false
|
61 |
+
per_device_train_batch_size: 1
|
62 |
+
gradient_accumulation_steps: 8
|
63 |
+
per_device_eval_batch_size: 1
|
64 |
+
learning_rate: 5.e-5 # Will point to input encoder lr, if user_custom_optimizer is False
|
65 |
+
num_train_epochs: 2
|
66 |
+
save_steps: 4900
|
67 |
+
evaluation_strategy: steps
|
68 |
+
eval_steps: 3000000
|
69 |
+
fp16: false
|
70 |
+
# fp16_opt_level: O1
|
71 |
+
lr_scheduler_type: "linear" # defaults to 'linear'
|
72 |
+
dataloader_num_workers: 16
|
73 |
+
label_names: [labels]
|
74 |
+
scenario: "unseen_labels"
|
75 |
+
|
76 |
+
ddp_find_unused_parameters: false
|
77 |
+
max_eval_samples: 15000
|
78 |
+
ignore_data_skip: true
|
79 |
+
# one_hour_job: true
|
80 |
+
seed: -1
|
81 |
+
|
cleaned_code/configs/ablation_amzn_eda_base.yml
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
EXP_NAME: "semsup_descs_100ep_newds_cosine"
|
3 |
+
EXP_DESC: "SemSup Descriptions ran for 100 epochs"
|
4 |
+
|
5 |
+
DATA:
|
6 |
+
task_name: amazon13k
|
7 |
+
dataset_name: amazon13k
|
8 |
+
dataset_config_name: null
|
9 |
+
max_seq_length: 160
|
10 |
+
overwrite_output_dir: false # Set to false, if using one_hour_job
|
11 |
+
overwrite_cache: false
|
12 |
+
pad_to_max_length: true
|
13 |
+
load_from_local: true
|
14 |
+
max_train_samples: null
|
15 |
+
max_eval_samples: null
|
16 |
+
max_predict_samples: null
|
17 |
+
train_file: datasets/Amzn13K/train_split6500_2.jsonl
|
18 |
+
validation_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
19 |
+
test_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
20 |
+
label_max_seq_length: 160
|
21 |
+
# descriptions_file: datasets/Amzn13K/amzn_curie_descsriptions.json
|
22 |
+
descriptions_file: datasets/Amzn13K/heir_withdescriptions_v3_v3_unseen_final.json
|
23 |
+
test_descriptions_file: datasets/Amzn13K/heir_withdescriptions_v3_v3.json
|
24 |
+
|
25 |
+
all_labels : datasets/Amzn13K/all_labels.txt
|
26 |
+
test_labels: datasets/Amzn13K/unseen_labels_split6500_2.txt
|
27 |
+
|
28 |
+
contrastive_learning_samples: 1000
|
29 |
+
cl_min_positive_descs: 1
|
30 |
+
# bm_short_file: datasets/eurlex4.3k/train_bmshort.txt
|
31 |
+
# ignore_pos_labels_file: datasets/Amzn13K/ignore_train_split6500_fs5.txt
|
32 |
+
coil_cluster_mapping_path: bert_coil_map_dict_lemma255K_isotropic.json
|
33 |
+
|
34 |
+
MODEL:
|
35 |
+
model_name_or_path: bert-base-uncased
|
36 |
+
# pretrained_model_path: output/semsup_descs_amzn13k_web_6500_small/checkpoint-20000/pytorch_model.bin
|
37 |
+
config_name: null
|
38 |
+
tokenizer_name: null
|
39 |
+
cache_dir: null
|
40 |
+
use_fast_tokenizer: true
|
41 |
+
model_revision: main
|
42 |
+
use_auth_token: false
|
43 |
+
ignore_mismatched_sizes: false
|
44 |
+
negative_sampling: "none"
|
45 |
+
semsup: true
|
46 |
+
# label_model_name_or_path: bert-base-uncased # prajjwal1/bert-small
|
47 |
+
label_model_name_or_path: prajjwal1/bert-small
|
48 |
+
encoder_model_type: bert
|
49 |
+
use_custom_optimizer: adamw
|
50 |
+
output_learning_rate: 1.e-4
|
51 |
+
arch_type : 2
|
52 |
+
add_label_name: true
|
53 |
+
normalize_embeddings: false
|
54 |
+
tie_weights: false
|
55 |
+
coil: true
|
56 |
+
colbert: false
|
57 |
+
# use_precomputed_embeddings: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_embs_bert_9_96.npy
|
58 |
+
token_dim: 16
|
59 |
+
label_frozen_layers: 2
|
60 |
+
|
61 |
+
TRAINING:
|
62 |
+
do_train: true
|
63 |
+
do_eval: true
|
64 |
+
do_predict: false
|
65 |
+
per_device_train_batch_size: 1
|
66 |
+
gradient_accumulation_steps: 8
|
67 |
+
per_device_eval_batch_size: 1
|
68 |
+
learning_rate: 5.e-5 # Will point to input encoder lr, if user_custom_optimizer is False
|
69 |
+
num_train_epochs: 2
|
70 |
+
save_steps: 4900
|
71 |
+
evaluation_strategy: steps
|
72 |
+
eval_steps: 3000000
|
73 |
+
fp16: true
|
74 |
+
fp16_opt_level: O1
|
75 |
+
lr_scheduler_type: "linear" # defaults to 'linear'
|
76 |
+
dataloader_num_workers: 16
|
77 |
+
label_names: [labels]
|
78 |
+
scenario: "unseen_labels"
|
79 |
+
|
80 |
+
ddp_find_unused_parameters: false
|
81 |
+
max_eval_samples: 15000
|
82 |
+
ignore_data_skip: true
|
83 |
+
# one_hour_job: true
|
84 |
+
seed: -1
|
85 |
+
|
cleaned_code/configs/ablation_amzn_eda_base2.yml
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
EXP_NAME: "semsup_descs_100ep_newds_cosine"
|
3 |
+
EXP_DESC: "SemSup Descriptions ran for 100 epochs"
|
4 |
+
|
5 |
+
DATA:
|
6 |
+
task_name: amazon13k
|
7 |
+
dataset_name: amazon13k
|
8 |
+
dataset_config_name: null
|
9 |
+
max_seq_length: 128
|
10 |
+
overwrite_output_dir: true # Set to false, if using one_hour_job
|
11 |
+
overwrite_cache: false
|
12 |
+
pad_to_max_length: true
|
13 |
+
load_from_local: true
|
14 |
+
max_train_samples: null
|
15 |
+
max_eval_samples: null
|
16 |
+
max_predict_samples: null
|
17 |
+
train_file: datasets/Amzn13K/train_split6500_2.jsonl
|
18 |
+
validation_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
19 |
+
test_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
20 |
+
label_max_seq_length: 96
|
21 |
+
# descriptions_file: datasets/Amzn13K/amzn_curie_descsriptions.json
|
22 |
+
descriptions_file: datasets/Amzn13K/heir_withdescriptions_v3_v3_unseen.json
|
23 |
+
test_descriptions_file: datasets/Amzn13K/heir_withdescriptions_v3_v3.json
|
24 |
+
|
25 |
+
all_labels : datasets/Amzn13K/all_labels.txt
|
26 |
+
test_labels: datasets/Amzn13K/unseen_labels_split6500_2.txt
|
27 |
+
|
28 |
+
contrastive_learning_samples: 2000
|
29 |
+
cl_min_positive_descs: 1
|
30 |
+
# bm_short_file: datasets/eurlex4.3k/train_bmshort.txt
|
31 |
+
# ignore_pos_labels_file: datasets/Amzn13K/ignore_train_split6500_fs5.txt
|
32 |
+
coil_cluster_mapping_path: bert_coil_map_dict_lemma255K_isotropic.json
|
33 |
+
|
34 |
+
MODEL:
|
35 |
+
model_name_or_path: bert-base-uncased
|
36 |
+
# pretrained_model_path: output/semsup_descs_amzn13k_web_6500_small/checkpoint-20000/pytorch_model.bin
|
37 |
+
config_name: null
|
38 |
+
tokenizer_name: null
|
39 |
+
cache_dir: null
|
40 |
+
use_fast_tokenizer: true
|
41 |
+
model_revision: main
|
42 |
+
use_auth_token: false
|
43 |
+
ignore_mismatched_sizes: false
|
44 |
+
negative_sampling: "none"
|
45 |
+
semsup: true
|
46 |
+
# label_model_name_or_path: bert-base-uncased # prajjwal1/bert-small
|
47 |
+
label_model_name_or_path: prajjwal1/bert-small
|
48 |
+
encoder_model_type: bert
|
49 |
+
use_custom_optimizer: adamw
|
50 |
+
output_learning_rate: 1.e-4
|
51 |
+
arch_type : 2
|
52 |
+
add_label_name: true
|
53 |
+
normalize_embeddings: false
|
54 |
+
tie_weights: false
|
55 |
+
coil: true
|
56 |
+
colbert: false
|
57 |
+
# use_precomputed_embeddings: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_embs_bert_9_96.npy
|
58 |
+
token_dim: 16
|
59 |
+
label_frozen_layers: 2
|
60 |
+
|
61 |
+
TRAINING:
|
62 |
+
do_train: true
|
63 |
+
do_eval: true
|
64 |
+
do_predict: false
|
65 |
+
per_device_train_batch_size: 1
|
66 |
+
gradient_accumulation_steps: 8
|
67 |
+
per_device_eval_batch_size: 1
|
68 |
+
learning_rate: 5.e-5 # Will point to input encoder lr, if user_custom_optimizer is False
|
69 |
+
num_train_epochs: 3
|
70 |
+
save_steps: 4900
|
71 |
+
evaluation_strategy: steps
|
72 |
+
eval_steps: 3000
|
73 |
+
fp16: true
|
74 |
+
fp16_opt_level: O1
|
75 |
+
lr_scheduler_type: "linear" # defaults to 'linear'
|
76 |
+
dataloader_num_workers: 4
|
77 |
+
label_names: [labels]
|
78 |
+
scenario: "unseen_labels"
|
79 |
+
|
80 |
+
ddp_find_unused_parameters: false
|
81 |
+
max_eval_samples: 15000
|
82 |
+
ignore_data_skip: true
|
83 |
+
# one_hour_job: true
|
84 |
+
|
cleaned_code/configs/ablation_eurlex_1_base.yml
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EXP_NAME: "semsup_descs_100ep_newds_cosine"
|
2 |
+
EXP_DESC: "SemSup Descriptions ran for 100 epochs"
|
3 |
+
|
4 |
+
DATA:
|
5 |
+
task_name: eurlex57k
|
6 |
+
dataset_name: eurlex
|
7 |
+
dataset_config_name: null
|
8 |
+
max_seq_length: 512
|
9 |
+
overwrite_output_dir: true
|
10 |
+
overwrite_cache: false
|
11 |
+
pad_to_max_length: true
|
12 |
+
load_from_local: true
|
13 |
+
max_train_samples: null
|
14 |
+
max_eval_samples: null
|
15 |
+
max_predict_samples: null
|
16 |
+
train_file: ../training/datasets/eurlex4.3k/train_split1057.jsonl
|
17 |
+
# validation_file: ../training/datasets/eurlex4.3k/test_unseen_split1057.jsonl
|
18 |
+
# test_file: ../training/datasets/eurlex4.3k/test_unseen_split1057.jsonl
|
19 |
+
validation_file: ../training/datasets/eurlex4.3k/test.jsonl
|
20 |
+
test_file: ../training/datasets/eurlex4.3k/test.jsonl
|
21 |
+
|
22 |
+
# validation_file: ../training/datasets/eurlex4.3k/test_unseen_hr.jsonl
|
23 |
+
# test_file: ../training/datasets/eurlex4.3k/test_unseen_hr.jsonl
|
24 |
+
label_max_seq_length: 128
|
25 |
+
# descriptions_file: ../training/datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_nl_unseen.json
|
26 |
+
# test_descriptions_file: ../training/datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_nl.json
|
27 |
+
descriptions_file: ../training/datasets/eurlex4.3k/heir_withdescriptions_4.3k_web_nl_unseen.json
|
28 |
+
test_descriptions_file: ../training/datasets/eurlex4.3k/heir_withdescriptions_4.3k_web_nl.json
|
29 |
+
|
30 |
+
|
31 |
+
all_labels : ../training/datasets/eurlex4.3k/all_labels.txt
|
32 |
+
test_labels : ../training/datasets/eurlex4.3k/all_labels.txt
|
33 |
+
# test_labels: ../training/datasets/eurlex4.3k/unseen_labels_split1057.txt
|
34 |
+
# test_labels: ../training/datasets/eurlex4.3k/unseen_labels.txt
|
35 |
+
|
36 |
+
contrastive_learning_samples: 1500
|
37 |
+
cl_min_positive_descs: 1
|
38 |
+
coil_cluster_mapping_path: bert_coil_map_dict_lemma255K_isotropic.json
|
39 |
+
|
40 |
+
MODEL:
|
41 |
+
model_name_or_path: bert-base-uncased
|
42 |
+
# pretrained_model_path: /n/fs/scratch/pranjal/seed_experiments/ablation_eurlex_1_base_web_128_seed2/checkpoint-21600/pytorch_model.bin
|
43 |
+
config_name: null
|
44 |
+
tokenizer_name: null
|
45 |
+
cache_dir: null
|
46 |
+
use_fast_tokenizer: true
|
47 |
+
model_revision: main
|
48 |
+
use_auth_token: false
|
49 |
+
ignore_mismatched_sizes: false
|
50 |
+
negative_sampling: "none"
|
51 |
+
semsup: true
|
52 |
+
label_model_name_or_path: prajjwal1/bert-small
|
53 |
+
encoder_model_type: bert
|
54 |
+
use_custom_optimizer: adamw
|
55 |
+
output_learning_rate: 1.e-4
|
56 |
+
arch_type : 2
|
57 |
+
add_label_name: false
|
58 |
+
normalize_embeddings: false
|
59 |
+
tie_weights: false
|
60 |
+
coil: true
|
61 |
+
# use_precomputed_embeddings: ../training/datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_embs_bert_9_96.npy
|
62 |
+
token_dim: 16
|
63 |
+
label_frozen_layers: 2
|
64 |
+
|
65 |
+
TRAINING:
|
66 |
+
do_train: true
|
67 |
+
do_eval: true
|
68 |
+
per_device_train_batch_size: 1
|
69 |
+
gradient_accumulation_steps: 8
|
70 |
+
per_device_eval_batch_size: 1
|
71 |
+
learning_rate: 5.e-5 # Will point to input encoder lr, if user_custom_optimizer is False
|
72 |
+
num_train_epochs: 10
|
73 |
+
save_steps: 5400
|
74 |
+
evaluation_strategy: steps
|
75 |
+
eval_steps: 5000
|
76 |
+
fp16: true
|
77 |
+
fp16_opt_level: O1
|
78 |
+
lr_scheduler_type: "linear" # defaults to 'linear'
|
79 |
+
dataloader_num_workers: 8
|
80 |
+
label_names: [labels]
|
81 |
+
scenario: "unseen_labels"
|
82 |
+
|
83 |
+
ddp_find_unused_parameters: false
|
84 |
+
seed: -1
|
85 |
+
|
cleaned_code/configs/ablation_eurlex_1_coil.yml
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EXP_NAME: "semsup_descs_100ep_newds_cosine"
|
2 |
+
EXP_DESC: "SemSup Descriptions ran for 100 epochs"
|
3 |
+
|
4 |
+
DATA:
|
5 |
+
task_name: eurlex57k
|
6 |
+
dataset_name: eurlex
|
7 |
+
dataset_config_name: null
|
8 |
+
max_seq_length: 512
|
9 |
+
overwrite_output_dir: true
|
10 |
+
overwrite_cache: false
|
11 |
+
pad_to_max_length: true
|
12 |
+
load_from_local: true
|
13 |
+
max_train_samples: null
|
14 |
+
max_eval_samples: null
|
15 |
+
max_predict_samples: null
|
16 |
+
train_file: datasets/eurlex4.3k/train_split1057.jsonl
|
17 |
+
validation_file: datasets/eurlex4.3k/test_unseen_split1057.jsonl
|
18 |
+
test_file: datasets/eurlex4.3k/test_unseen_split1057.jsonl
|
19 |
+
|
20 |
+
# validation_file: datasets/eurlex4.3k/test_unseen_hr.jsonl
|
21 |
+
# test_file: datasets/eurlex4.3k/test_unseen_hr.jsonl
|
22 |
+
label_max_seq_length: 128
|
23 |
+
# descriptions_file: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_nl_unseen.json
|
24 |
+
# test_descriptions_file: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_nl.json
|
25 |
+
descriptions_file: datasets/eurlex4.3k/heir_withdescriptions_4.3k_web_nl_unseen.json
|
26 |
+
test_descriptions_file: datasets/eurlex4.3k/heir_withdescriptions_4.3k_web_nl.json
|
27 |
+
|
28 |
+
|
29 |
+
all_labels : datasets/eurlex4.3k/all_labels.txt
|
30 |
+
test_labels: datasets/eurlex4.3k/unseen_labels_split1057.txt
|
31 |
+
# test_labels: datasets/eurlex4.3k/unseen_labels.txt
|
32 |
+
|
33 |
+
# max_descs_per_label: 5
|
34 |
+
contrastive_learning_samples: 1500
|
35 |
+
cl_min_positive_descs: 1
|
36 |
+
# bm_short_file: datasets/eurlex4.3k/train_bmshort.txt
|
37 |
+
# coil_cluster_mapping_path: bert_coil_map_dict_lemma255K_isotropic.json
|
38 |
+
# coil_cluster_mapping_path: bert_coil_map_dict_lemma.json
|
39 |
+
|
40 |
+
MODEL:
|
41 |
+
model_name_or_path: bert-base-uncased
|
42 |
+
pretrained_model_path: /n/fs/scratch/pranjal/seed_experiments/ablation_eurlex_1_coil_web_seed2/checkpoint-5400/pytorch_model.bin
|
43 |
+
config_name: null
|
44 |
+
tokenizer_name: null
|
45 |
+
cache_dir: null
|
46 |
+
use_fast_tokenizer: true
|
47 |
+
model_revision: main
|
48 |
+
use_auth_token: false
|
49 |
+
ignore_mismatched_sizes: false
|
50 |
+
negative_sampling: "none"
|
51 |
+
semsup: true
|
52 |
+
label_model_name_or_path: prajjwal1/bert-small
|
53 |
+
# label_model_name_or_path: bert-base-uncased
|
54 |
+
# label_model_name_or_path: prajjwal1/bert-tiny
|
55 |
+
encoder_model_type: bert
|
56 |
+
use_custom_optimizer: adamw
|
57 |
+
output_learning_rate: 1.e-4
|
58 |
+
arch_type : 2
|
59 |
+
add_label_name: false
|
60 |
+
normalize_embeddings: false
|
61 |
+
tie_weights: false
|
62 |
+
coil: false
|
63 |
+
# use_precomputed_embeddings: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_embs_bert_9_96.npy
|
64 |
+
token_dim: 16
|
65 |
+
# num_frozen_layers: 9
|
66 |
+
label_frozen_layers: 2
|
67 |
+
|
68 |
+
TRAINING:
|
69 |
+
do_train: false
|
70 |
+
do_eval: true
|
71 |
+
per_device_train_batch_size: 1
|
72 |
+
gradient_accumulation_steps: 8
|
73 |
+
per_device_eval_batch_size: 1
|
74 |
+
learning_rate: 5.e-5 # Will point to input encoder lr, if user_custom_optimizer is False
|
75 |
+
num_train_epochs: 10
|
76 |
+
save_steps: 5400
|
77 |
+
evaluation_strategy: steps
|
78 |
+
eval_steps: 5000
|
79 |
+
fp16: true
|
80 |
+
fp16_opt_level: O1
|
81 |
+
lr_scheduler_type: "linear" # defaults to 'linear'
|
82 |
+
dataloader_num_workers: 8
|
83 |
+
label_names: [labels]
|
84 |
+
scenario: "unseen_labels"
|
85 |
+
|
86 |
+
ddp_find_unused_parameters: false
|
87 |
+
seed: -1
|
88 |
+
|
cleaned_code/configs/ablation_eurlex_1_descs.yml
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EXP_NAME: "semsup_descs_100ep_newds_cosine"
|
2 |
+
EXP_DESC: "SemSup Descriptions ran for 100 epochs"
|
3 |
+
|
4 |
+
DATA:
|
5 |
+
task_name: eurlex57k
|
6 |
+
dataset_name: eurlex
|
7 |
+
dataset_config_name: null
|
8 |
+
max_seq_length: 512
|
9 |
+
overwrite_output_dir: true
|
10 |
+
overwrite_cache: false
|
11 |
+
pad_to_max_length: true
|
12 |
+
load_from_local: true
|
13 |
+
max_train_samples: null
|
14 |
+
max_eval_samples: null
|
15 |
+
max_predict_samples: null
|
16 |
+
train_file: datasets/eurlex4.3k/train_split1057.jsonl
|
17 |
+
# validation_file: datasets/eurlex4.3k/test_unseen_split1057.jsonl
|
18 |
+
# test_file: datasets/eurlex4.3k/test_unseen_split1057.jsonl
|
19 |
+
|
20 |
+
validation_file: datasets/eurlex4.3k/test.jsonl
|
21 |
+
test_file: datasets/eurlex4.3k/test.jsonl
|
22 |
+
|
23 |
+
# validation_file: datasets/eurlex4.3k/test_unseen_hr.jsonl
|
24 |
+
# test_file: datasets/eurlex4.3k/test_unseen_hr.jsonl
|
25 |
+
label_max_seq_length: 64
|
26 |
+
descriptions_file: datasets/eurlex4.3k/heir_withoutdescriptions_4.3k_web_nl_unseen.json
|
27 |
+
test_descriptions_file: datasets/eurlex4.3k/heir_withoutdescriptions_4.3k_web_nl.json
|
28 |
+
# descriptions_file: datasets/eurlex4.3k/heir_descriptions_4.3k_v1.json
|
29 |
+
# descriptions_file: datasets/eurlex4.3k/curie_descriptions_4.3k_v1.json
|
30 |
+
all_labels : datasets/eurlex4.3k/all_labels.txt
|
31 |
+
test_labels : datasets/eurlex4.3k/all_labels.txt
|
32 |
+
|
33 |
+
# test_labels: datasets/eurlex4.3k/unseen_labels_split1057.txt
|
34 |
+
# test_labels: datasets/eurlex4.3k/unseen_labels.txt
|
35 |
+
|
36 |
+
# max_descs_per_label: 5
|
37 |
+
contrastive_learning_samples: 1500
|
38 |
+
cl_min_positive_descs: 1
|
39 |
+
# bm_short_file: datasets/eurlex4.3k/train_bmshort.txt
|
40 |
+
coil_cluster_mapping_path: bert_coil_map_dict_lemma255K_isotropic.json
|
41 |
+
# coil_cluster_mapping_path: bert_coil_map_dict_lemma.json
|
42 |
+
|
43 |
+
MODEL:
|
44 |
+
model_name_or_path: bert-base-uncased
|
45 |
+
pretrained_model_path: /n/fs/scratch/pranjal/seed_experiments/ablation_eurlex_1_descs_seed3/checkpoint-27000/pytorch_model.bin
|
46 |
+
config_name: null
|
47 |
+
tokenizer_name: null
|
48 |
+
cache_dir: null
|
49 |
+
use_fast_tokenizer: true
|
50 |
+
model_revision: main
|
51 |
+
use_auth_token: false
|
52 |
+
ignore_mismatched_sizes: false
|
53 |
+
negative_sampling: "none"
|
54 |
+
semsup: true
|
55 |
+
label_model_name_or_path: prajjwal1/bert-small
|
56 |
+
# label_model_name_or_path: bert-base-uncased
|
57 |
+
# label_model_name_or_path: prajjwal1/bert-tiny
|
58 |
+
encoder_model_type: bert
|
59 |
+
use_custom_optimizer: adamw
|
60 |
+
output_learning_rate: 1.e-4
|
61 |
+
arch_type : 2
|
62 |
+
add_label_name: false
|
63 |
+
normalize_embeddings: false
|
64 |
+
tie_weights: false
|
65 |
+
coil: true
|
66 |
+
# use_precomputed_embeddings: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_embs_bert_9_96.npy
|
67 |
+
token_dim: 16
|
68 |
+
# num_frozen_layers: 9
|
69 |
+
label_frozen_layers: 2
|
70 |
+
|
71 |
+
TRAINING:
|
72 |
+
do_train: false
|
73 |
+
do_eval: true
|
74 |
+
per_device_train_batch_size: 1
|
75 |
+
gradient_accumulation_steps: 8
|
76 |
+
per_device_eval_batch_size: 1
|
77 |
+
learning_rate: 5.e-5 # Will point to input encoder lr, if user_custom_optimizer is False
|
78 |
+
num_train_epochs: 10
|
79 |
+
save_steps: 5400
|
80 |
+
evaluation_strategy: steps
|
81 |
+
eval_steps: 5000
|
82 |
+
fp16: true
|
83 |
+
fp16_opt_level: O1
|
84 |
+
lr_scheduler_type: "linear" # defaults to 'linear'
|
85 |
+
dataloader_num_workers: 8
|
86 |
+
label_names: [labels]
|
87 |
+
scenario: "unseen_labels"
|
88 |
+
|
89 |
+
ddp_find_unused_parameters: false
|
90 |
+
seed: -1
|
91 |
+
|
cleaned_code/configs/ablation_eurlex_1_hier_descs.yml
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EXP_NAME: "semsup_descs_100ep_newds_cosine"
|
2 |
+
EXP_DESC: "SemSup Descriptions ran for 100 epochs"
|
3 |
+
|
4 |
+
DATA:
|
5 |
+
task_name: eurlex57k
|
6 |
+
dataset_name: eurlex
|
7 |
+
dataset_config_name: null
|
8 |
+
max_seq_length: 512
|
9 |
+
overwrite_output_dir: true
|
10 |
+
overwrite_cache: false
|
11 |
+
pad_to_max_length: true
|
12 |
+
load_from_local: true
|
13 |
+
max_train_samples: null
|
14 |
+
max_eval_samples: null
|
15 |
+
max_predict_samples: null
|
16 |
+
# train_file: datasets/eurlex4.3k/train_hr.jsonl
|
17 |
+
# train_file: datasets/eurlex4.3k/train.jsonl
|
18 |
+
# validation_file: datasets/eurlex4.3k/test_unseen.jsonl
|
19 |
+
# test_file: datasets/eurlex4.3k/test_unseen.jsonl
|
20 |
+
# validation_file: datasets/eurlex4.3k/test.jsonl
|
21 |
+
# test_file: datasets/eurlex4.3k/test.jsonl
|
22 |
+
train_file: datasets/eurlex4.3k/train_split1057.jsonl
|
23 |
+
validation_file: datasets/eurlex4.3k/test_unseen_split1057.jsonl
|
24 |
+
test_file: datasets/eurlex4.3k/test_unseen_split1057.jsonl
|
25 |
+
|
26 |
+
# validation_file: datasets/eurlex4.3k/test_unseen_hr.jsonl
|
27 |
+
# test_file: datasets/eurlex4.3k/test_unseen_hr.jsonl
|
28 |
+
label_max_seq_length: 8
|
29 |
+
descriptions_file: datasets/eurlex4.3k/all_names.json
|
30 |
+
test_descriptions_file: datasets/eurlex4.3k/all_names.json
|
31 |
+
# descriptions_file: datasets/eurlex4.3k/heir_descriptions_4.3k_v1.json
|
32 |
+
# descriptions_file: datasets/eurlex4.3k/curie_descriptions_4.3k_v1.json
|
33 |
+
all_labels : datasets/eurlex4.3k/all_labels.txt
|
34 |
+
test_labels: datasets/eurlex4.3k/unseen_labels_split1057.txt
|
35 |
+
# test_labels: datasets/eurlex4.3k/unseen_labels.txt
|
36 |
+
|
37 |
+
# max_descs_per_label: 5
|
38 |
+
# contrastive_learning_samples: 1500
|
39 |
+
# cl_min_positive_descs: 1
|
40 |
+
# bm_short_file: datasets/eurlex4.3k/train_bmshort.txt
|
41 |
+
coil_cluster_mapping_path: bert_coil_map_dict_lemma255K_isotropic.json
|
42 |
+
# coil_cluster_mapping_path: bert_coil_map_dict_lemma.json
|
43 |
+
|
44 |
+
MODEL:
|
45 |
+
model_name_or_path: bert-base-uncased
|
46 |
+
config_name: null
|
47 |
+
tokenizer_name: null
|
48 |
+
cache_dir: null
|
49 |
+
use_fast_tokenizer: true
|
50 |
+
model_revision: main
|
51 |
+
use_auth_token: false
|
52 |
+
ignore_mismatched_sizes: false
|
53 |
+
negative_sampling: "none"
|
54 |
+
semsup: true
|
55 |
+
label_model_name_or_path: prajjwal1/bert-small
|
56 |
+
# label_model_name_or_path: bert-base-uncased
|
57 |
+
# label_model_name_or_path: prajjwal1/bert-tiny
|
58 |
+
encoder_model_type: bert
|
59 |
+
use_custom_optimizer: adamw
|
60 |
+
output_learning_rate: 1.e-4
|
61 |
+
arch_type : 2
|
62 |
+
add_label_name: false
|
63 |
+
normalize_embeddings: false
|
64 |
+
tie_weights: false
|
65 |
+
coil: true
|
66 |
+
# use_precomputed_embeddings: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_embs_bert_9_96.npy
|
67 |
+
token_dim: 16
|
68 |
+
# num_frozen_layers: 9
|
69 |
+
label_frozen_layers: 2
|
70 |
+
|
71 |
+
TRAINING:
|
72 |
+
do_train: true
|
73 |
+
do_eval: true
|
74 |
+
per_device_train_batch_size: 4
|
75 |
+
gradient_accumulation_steps: 4
|
76 |
+
per_device_eval_batch_size: 1
|
77 |
+
learning_rate: 5.e-5 # Will point to input encoder lr, if user_custom_optimizer is False
|
78 |
+
num_train_epochs: 10
|
79 |
+
save_steps: 10000
|
80 |
+
evaluation_strategy: steps
|
81 |
+
eval_steps: 500
|
82 |
+
fp16: true
|
83 |
+
fp16_opt_level: O1
|
84 |
+
lr_scheduler_type: "linear" # defaults to 'linear'
|
85 |
+
dataloader_num_workers: 8
|
86 |
+
label_names: [labels]
|
87 |
+
scenario: "unseen_labels"
|
88 |
+
|
89 |
+
ddp_find_unused_parameters: false
|
90 |
+
|
91 |
+
|
cleaned_code/configs/ablation_eurlex_1_hierarchy.yml
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EXP_NAME: "semsup_descs_100ep_newds_cosine"
|
2 |
+
EXP_DESC: "SemSup Descriptions ran for 100 epochs"
|
3 |
+
|
4 |
+
DATA:
|
5 |
+
task_name: eurlex57k
|
6 |
+
dataset_name: eurlex
|
7 |
+
dataset_config_name: null
|
8 |
+
max_seq_length: 512
|
9 |
+
overwrite_output_dir: true
|
10 |
+
overwrite_cache: false
|
11 |
+
pad_to_max_length: true
|
12 |
+
load_from_local: true
|
13 |
+
max_train_samples: null
|
14 |
+
max_eval_samples: null
|
15 |
+
max_predict_samples: null
|
16 |
+
train_file: datasets/eurlex4.3k/train_split1057.jsonl
|
17 |
+
validation_file: datasets/eurlex4.3k/test_unseen_split1057.jsonl
|
18 |
+
test_file: datasets/eurlex4.3k/test_unseen_split1057.jsonl
|
19 |
+
|
20 |
+
# validation_file: datasets/eurlex4.3k/test_unseen_hr.jsonl
|
21 |
+
# test_file: datasets/eurlex4.3k/test_unseen_hr.jsonl
|
22 |
+
label_max_seq_length: 96
|
23 |
+
# descriptions_file: datasets/eurlex4.3k/curie_descriptions_4.3k_v1.json
|
24 |
+
# test_descriptions_file: datasets/eurlex4.3k/curie_descriptions_4.3k_v1.json
|
25 |
+
descriptions_file: datasets/eurlex4.3k/eurlex_descs_refined_v3_v3.json
|
26 |
+
test_descriptions_file: datasets/eurlex4.3k/eurlex_descs_refined_v3_v3.json
|
27 |
+
|
28 |
+
|
29 |
+
all_labels : datasets/eurlex4.3k/all_labels.txt
|
30 |
+
test_labels: datasets/eurlex4.3k/unseen_labels_split1057.txt
|
31 |
+
# test_labels: datasets/eurlex4.3k/unseen_labels.txt
|
32 |
+
|
33 |
+
max_descs_per_label: 5
|
34 |
+
contrastive_learning_samples: 1500
|
35 |
+
cl_min_positive_descs: 1
|
36 |
+
# bm_short_file: datasets/eurlex4.3k/train_bmshort.txt
|
37 |
+
coil_cluster_mapping_path: bert_coil_map_dict_lemma255K_isotropic.json
|
38 |
+
# coil_cluster_mapping_path: bert_coil_map_dict_lemma.json
|
39 |
+
|
40 |
+
MODEL:
|
41 |
+
model_name_or_path: bert-base-uncased
|
42 |
+
pretrained_model_path: seed_experiments/ablation_eurlex_1_hierarchy_web_seed3/checkpoint-5400/pytorch_model.bin
|
43 |
+
config_name: null
|
44 |
+
tokenizer_name: null
|
45 |
+
cache_dir: null
|
46 |
+
use_fast_tokenizer: true
|
47 |
+
model_revision: main
|
48 |
+
use_auth_token: false
|
49 |
+
ignore_mismatched_sizes: false
|
50 |
+
negative_sampling: "none"
|
51 |
+
semsup: true
|
52 |
+
label_model_name_or_path: prajjwal1/bert-small
|
53 |
+
# label_model_name_or_path: bert-base-uncased
|
54 |
+
# label_model_name_or_path: prajjwal1/bert-tiny
|
55 |
+
encoder_model_type: bert
|
56 |
+
use_custom_optimizer: adamw
|
57 |
+
output_learning_rate: 1.e-4
|
58 |
+
arch_type : 2
|
59 |
+
add_label_name: false
|
60 |
+
normalize_embeddings: false
|
61 |
+
tie_weights: false
|
62 |
+
coil: true
|
63 |
+
# use_precomputed_embeddings: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_embs_bert_9_96.npy
|
64 |
+
token_dim: 16
|
65 |
+
# num_frozen_layers: 9
|
66 |
+
label_frozen_layers: 2
|
67 |
+
|
68 |
+
TRAINING:
|
69 |
+
do_train: false
|
70 |
+
do_eval: true
|
71 |
+
per_device_train_batch_size: 1
|
72 |
+
gradient_accumulation_steps: 8
|
73 |
+
per_device_eval_batch_size: 1
|
74 |
+
learning_rate: 5.e-5 # Will point to input encoder lr, if user_custom_optimizer is False
|
75 |
+
num_train_epochs: 10
|
76 |
+
save_steps: 5400
|
77 |
+
evaluation_strategy: steps
|
78 |
+
eval_steps: 5000
|
79 |
+
fp16: true
|
80 |
+
fp16_opt_level: O1
|
81 |
+
lr_scheduler_type: "linear" # defaults to 'linear'
|
82 |
+
dataloader_num_workers: 8
|
83 |
+
label_names: [labels]
|
84 |
+
scenario: "unseen_labels"
|
85 |
+
|
86 |
+
ddp_find_unused_parameters: false
|
87 |
+
seed: -1
|
88 |
+
|
cleaned_code/configs/ablation_eurlex_1_relax.yml
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
EXP_NAME: "semsup_descs_100ep_newds_cosine"
|
3 |
+
EXP_DESC: "SemSup Descriptions ran for 100 epochs"
|
4 |
+
|
5 |
+
DATA:
|
6 |
+
task_name: eurlex57k
|
7 |
+
dataset_name: eurlex
|
8 |
+
dataset_config_name: null
|
9 |
+
max_seq_length: 512
|
10 |
+
overwrite_output_dir: true # Set to false, if using one_hour_job
|
11 |
+
overwrite_cache: false
|
12 |
+
pad_to_max_length: true
|
13 |
+
load_from_local: true
|
14 |
+
max_train_samples: null
|
15 |
+
max_eval_samples: null
|
16 |
+
max_predict_samples: null
|
17 |
+
train_file: datasets/eurlex4.3k/train_split1057.jsonl
|
18 |
+
validation_file: datasets/eurlex4.3k/test_unseen_split1057.jsonl
|
19 |
+
test_file: datasets/eurlex4.3k/test_unseen_split1057.jsonl
|
20 |
+
label_max_seq_length: 128
|
21 |
+
# descriptions_file: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_nl_unseen.json
|
22 |
+
# test_descriptions_file: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_nl.json
|
23 |
+
descriptions_file: datasets/eurlex4.3k/heir_withdescriptions_4.3k_web_nl_unseen.json
|
24 |
+
test_descriptions_file: datasets/eurlex4.3k/heir_withdescriptions_4.3k_web_nl.json
|
25 |
+
|
26 |
+
|
27 |
+
all_labels : datasets/eurlex4.3k/all_labels.txt
|
28 |
+
test_labels: datasets/eurlex4.3k/unseen_labels_split1057.txt
|
29 |
+
# test_labels: datasets/eurlex4.3k/unseen_labels.txt
|
30 |
+
|
31 |
+
contrastive_learning_samples: 1500
|
32 |
+
cl_min_positive_descs: 1
|
33 |
+
# bm_short_file: datasets/eurlex4.3k/train_bmshort.txt
|
34 |
+
# ignore_pos_labels_file: datasets/Amzn13K/ignore_train_split6500_fs5.txt
|
35 |
+
# coil_cluster_mapping_path: bert_coil_map_dict_lemma255K_isotropic.json
|
36 |
+
|
37 |
+
MODEL:
|
38 |
+
model_name_or_path: bert-base-uncased
|
39 |
+
pretrained_model_path: seed_experiments/ablation_eurlex_1_relax_web_seed3/checkpoint-4900/pytorch_model.bin
|
40 |
+
config_name: null
|
41 |
+
tokenizer_name: null
|
42 |
+
cache_dir: null
|
43 |
+
use_fast_tokenizer: true
|
44 |
+
model_revision: main
|
45 |
+
use_auth_token: false
|
46 |
+
ignore_mismatched_sizes: false
|
47 |
+
negative_sampling: "none"
|
48 |
+
semsup: true
|
49 |
+
# label_model_name_or_path: bert-base-uncased # prajjwal1/bert-small
|
50 |
+
label_model_name_or_path: prajjwal1/bert-small
|
51 |
+
encoder_model_type: bert
|
52 |
+
use_custom_optimizer: adamw
|
53 |
+
output_learning_rate: 1.e-4
|
54 |
+
arch_type : 2
|
55 |
+
add_label_name: false
|
56 |
+
normalize_embeddings: false
|
57 |
+
tie_weights: false
|
58 |
+
coil: true
|
59 |
+
# use_precomputed_embeddings: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_embs_bert_9_96.npy
|
60 |
+
token_dim: 16
|
61 |
+
label_frozen_layers: 2
|
62 |
+
|
63 |
+
TRAINING:
|
64 |
+
do_train: false
|
65 |
+
do_eval: true
|
66 |
+
per_device_train_batch_size: 1
|
67 |
+
gradient_accumulation_steps: 8
|
68 |
+
per_device_eval_batch_size: 1
|
69 |
+
learning_rate: 5.e-5 # Will point to input encoder lr, if user_custom_optimizer is False
|
70 |
+
num_train_epochs: 10
|
71 |
+
save_steps: 5400
|
72 |
+
evaluation_strategy: steps
|
73 |
+
eval_steps: 5000
|
74 |
+
fp16: true
|
75 |
+
fp16_opt_level: O1
|
76 |
+
lr_scheduler_type: "linear" # defaults to 'linear'
|
77 |
+
dataloader_num_workers: 16
|
78 |
+
label_names: [labels]
|
79 |
+
scenario: "unseen_labels"
|
80 |
+
|
81 |
+
ddp_find_unused_parameters: false
|
82 |
+
# max_eval_samples: 15000
|
83 |
+
# ignore_data_skip: true
|
84 |
+
# one_hour_job: true
|
85 |
+
seed: -1
|
86 |
+
|
cleaned_code/configs/ablation_eurlex_eda.yml
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EXP_NAME: "semsup_descs_100ep_newds_cosine"
|
2 |
+
EXP_DESC: "SemSup Descriptions ran for 100 epochs"
|
3 |
+
|
4 |
+
DATA:
|
5 |
+
task_name: eurlex57k
|
6 |
+
dataset_name: eurlex
|
7 |
+
dataset_config_name: null
|
8 |
+
max_seq_length: 512
|
9 |
+
overwrite_output_dir: true
|
10 |
+
overwrite_cache: false
|
11 |
+
pad_to_max_length: true
|
12 |
+
load_from_local: true
|
13 |
+
max_train_samples: null
|
14 |
+
max_eval_samples: null
|
15 |
+
max_predict_samples: null
|
16 |
+
train_file: datasets/eurlex4.3k/train_split1057.jsonl
|
17 |
+
validation_file: datasets/eurlex4.3k/test_unseen_split1057.jsonl
|
18 |
+
test_file: datasets/eurlex4.3k/test_unseen_split1057.jsonl
|
19 |
+
|
20 |
+
# validation_file: datasets/eurlex4.3k/test_unseen_hr.jsonl
|
21 |
+
# test_file: datasets/eurlex4.3k/test_unseen_hr.jsonl
|
22 |
+
label_max_seq_length: 128
|
23 |
+
# descriptions_file: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_nl_unseen.json
|
24 |
+
# test_descriptions_file: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_nl.json
|
25 |
+
descriptions_file: datasets/eurlex4.3k/heir_withdescriptions_4.3k_web_nl_unseen_edaaug.json
|
26 |
+
test_descriptions_file: datasets/eurlex4.3k/heir_withdescriptions_4.3k_web_nl.json
|
27 |
+
|
28 |
+
|
29 |
+
all_labels : datasets/eurlex4.3k/all_labels.txt
|
30 |
+
test_labels: datasets/eurlex4.3k/unseen_labels_split1057.txt
|
31 |
+
# test_labels: datasets/eurlex4.3k/unseen_labels.txt
|
32 |
+
|
33 |
+
contrastive_learning_samples: 1500
|
34 |
+
cl_min_positive_descs: 1
|
35 |
+
coil_cluster_mapping_path: bert_coil_map_dict_lemma255K_isotropic.json
|
36 |
+
|
37 |
+
MODEL:
|
38 |
+
model_name_or_path: bert-base-uncased
|
39 |
+
pretrained_model_path: seed_experiments/ablation_eurlex_1_eda_web_128_seed3/checkpoint-5400/pytorch_model.bin
|
40 |
+
config_name: null
|
41 |
+
tokenizer_name: null
|
42 |
+
cache_dir: null
|
43 |
+
use_fast_tokenizer: true
|
44 |
+
model_revision: main
|
45 |
+
use_auth_token: false
|
46 |
+
ignore_mismatched_sizes: false
|
47 |
+
negative_sampling: "none"
|
48 |
+
semsup: true
|
49 |
+
label_model_name_or_path: prajjwal1/bert-small
|
50 |
+
encoder_model_type: bert
|
51 |
+
use_custom_optimizer: adamw
|
52 |
+
output_learning_rate: 1.e-4
|
53 |
+
arch_type : 2
|
54 |
+
add_label_name: false
|
55 |
+
normalize_embeddings: false
|
56 |
+
tie_weights: false
|
57 |
+
coil: true
|
58 |
+
# use_precomputed_embeddings: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_embs_bert_9_96.npy
|
59 |
+
token_dim: 16
|
60 |
+
label_frozen_layers: 2
|
61 |
+
|
62 |
+
TRAINING:
|
63 |
+
do_train: false
|
64 |
+
do_eval: true
|
65 |
+
per_device_train_batch_size: 1
|
66 |
+
gradient_accumulation_steps: 4
|
67 |
+
per_device_eval_batch_size: 2
|
68 |
+
learning_rate: 5.e-5 # Will point to input encoder lr, if user_custom_optimizer is False
|
69 |
+
num_train_epochs: 10
|
70 |
+
save_steps: 5400
|
71 |
+
evaluation_strategy: steps
|
72 |
+
eval_steps: 5000
|
73 |
+
fp16: true
|
74 |
+
fp16_opt_level: O1
|
75 |
+
lr_scheduler_type: "linear" # defaults to 'linear'
|
76 |
+
dataloader_num_workers: 16
|
77 |
+
label_names: [labels]
|
78 |
+
scenario: "unseen_labels"
|
79 |
+
|
80 |
+
ddp_find_unused_parameters: false
|
81 |
+
seed: -1
|
82 |
+
|
cleaned_code/configs/amzn13k_active_hfwnet.yml
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EXP_NAME: "semsup_descs_100ep_newds_cosine"
|
2 |
+
EXP_DESC: "SemSup Descriptions ran for 100 epochs"
|
3 |
+
|
4 |
+
DATA:
|
5 |
+
task_name: amazon13k
|
6 |
+
dataset_name: amazon13k
|
7 |
+
dataset_config_name: null
|
8 |
+
max_seq_length: 128
|
9 |
+
overwrite_output_dir: true # Set to false, if using one_hour_job
|
10 |
+
overwrite_cache: false
|
11 |
+
pad_to_max_length: true
|
12 |
+
load_from_local: true
|
13 |
+
max_train_samples: null
|
14 |
+
max_eval_samples: null
|
15 |
+
max_predict_samples: null
|
16 |
+
train_file: datasets/Amzn13K/train_split1668_hfwnet.jsonl
|
17 |
+
validation_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
18 |
+
test_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
19 |
+
label_max_seq_length: 32
|
20 |
+
# descriptions_file: datasets/Amzn13K/amzn_curie_descsriptions.json
|
21 |
+
descriptions_file: datasets/Amzn13K/amzn_descs_refined_v3_v3.json
|
22 |
+
all_labels : datasets/Amzn13K/all_labels.txt
|
23 |
+
test_labels: datasets/Amzn13K/unseen_labels_split6500_2.txt
|
24 |
+
|
25 |
+
# max_descs_per_label: 10
|
26 |
+
# contrastive_learning_samples: 5000
|
27 |
+
# cl_min_positive_descs: 1
|
28 |
+
# bm_short_file: datasets/eurlex4.3k/train_bmshort.txt
|
29 |
+
# ignore_pos_labels_file: datasets/Amzn13K/ignore_train_split6500_fs5.txt
|
30 |
+
|
31 |
+
MODEL:
|
32 |
+
model_name_or_path: bert-base-uncased
|
33 |
+
config_name: null
|
34 |
+
tokenizer_name: null
|
35 |
+
cache_dir: null
|
36 |
+
use_fast_tokenizer: true
|
37 |
+
model_revision: main
|
38 |
+
use_auth_token: false
|
39 |
+
ignore_mismatched_sizes: false
|
40 |
+
negative_sampling: "none"
|
41 |
+
semsup: true
|
42 |
+
# label_model_name_or_path: bert-base-uncased # prajjwal1/bert-small
|
43 |
+
label_model_name_or_path: prajjwal1/bert-small
|
44 |
+
encoder_model_type: bert
|
45 |
+
use_custom_optimizer: adamw
|
46 |
+
output_learning_rate: 1.e-4
|
47 |
+
arch_type : 2
|
48 |
+
add_label_name: true
|
49 |
+
normalize_embeddings: false
|
50 |
+
tie_weights: false
|
51 |
+
coil: true
|
52 |
+
colbert: false
|
53 |
+
# use_precomputed_embeddings: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_embs_bert_9_96.npy
|
54 |
+
token_dim: 16
|
55 |
+
label_frozen_layers: 2
|
56 |
+
|
57 |
+
TRAINING:
|
58 |
+
do_train: true
|
59 |
+
do_eval: true
|
60 |
+
do_predict: false
|
61 |
+
per_device_train_batch_size: 1
|
62 |
+
gradient_accumulation_steps: 4
|
63 |
+
per_device_eval_batch_size: 1
|
64 |
+
learning_rate: 5.e-5 # Will point to input encoder lr, if user_custom_optimizer is False
|
65 |
+
num_train_epochs: 20
|
66 |
+
save_steps: 5000
|
67 |
+
evaluation_strategy: steps
|
68 |
+
eval_steps: 2000
|
69 |
+
fp16: true
|
70 |
+
fp16_opt_level: O1
|
71 |
+
lr_scheduler_type: "linear" # defaults to 'linear'
|
72 |
+
dataloader_num_workers: 4
|
73 |
+
label_names: [labels]
|
74 |
+
scenario: "unseen_labels"
|
75 |
+
|
76 |
+
ddp_find_unused_parameters: false
|
77 |
+
max_eval_samples: 15000
|
78 |
+
# ignore_data_skip: true
|
79 |
+
# one_hour_job: true
|
cleaned_code/configs/amzn13k_active_highfreq.yml
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EXP_NAME: "semsup_descs_100ep_newds_cosine"
|
2 |
+
EXP_DESC: "SemSup Descriptions ran for 100 epochs"
|
3 |
+
|
4 |
+
DATA:
|
5 |
+
task_name: amazon13k
|
6 |
+
dataset_name: amazon13k
|
7 |
+
dataset_config_name: null
|
8 |
+
max_seq_length: 128
|
9 |
+
overwrite_output_dir: true # Set to false, if using one_hour_job
|
10 |
+
overwrite_cache: false
|
11 |
+
pad_to_max_length: true
|
12 |
+
load_from_local: true
|
13 |
+
max_train_samples: null
|
14 |
+
max_eval_samples: null
|
15 |
+
max_predict_samples: null
|
16 |
+
# train_file: datasets/Amzn13K/train_split1668_highfreq_fs50.jsonl
|
17 |
+
# train_file: datasets/Amzn13K/train_split1668_highfreq.jsonl
|
18 |
+
train_file: datasets/Amzn13K/train_split1106_highfreq_bot.jsonl
|
19 |
+
|
20 |
+
validation_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
21 |
+
test_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
22 |
+
label_max_seq_length: 96
|
23 |
+
# descriptions_file: datasets/Amzn13K/amzn_curie_descsriptions.json
|
24 |
+
# descriptions_file: datasets/Amzn13K/amzn_descs_refined_v3_v3.json
|
25 |
+
descriptions_file: datasets/Amzn13K/heir_withdescriptions_v3_v3_unseen.json
|
26 |
+
test_descriptions_file: datasets/Amzn13K/heir_withdescriptions_v3_v3.json
|
27 |
+
|
28 |
+
all_labels : datasets/Amzn13K/all_labels.txt
|
29 |
+
test_labels: datasets/Amzn13K/unseen_labels_split6500_2.txt
|
30 |
+
|
31 |
+
# max_descs_per_label: 10
|
32 |
+
# contrastive_learning_samples: 5000
|
33 |
+
# cl_min_positive_descs: 1
|
34 |
+
# bm_short_file: datasets/eurlex4.3k/train_bmshort.txt
|
35 |
+
# ignore_pos_labels_file: datasets/Amzn13K/ignore_train_split1668_highfreq_fs50.txt
|
36 |
+
|
37 |
+
MODEL:
|
38 |
+
model_name_or_path: bert-base-uncased
|
39 |
+
config_name: null
|
40 |
+
tokenizer_name: null
|
41 |
+
cache_dir: null
|
42 |
+
use_fast_tokenizer: true
|
43 |
+
model_revision: main
|
44 |
+
use_auth_token: false
|
45 |
+
ignore_mismatched_sizes: false
|
46 |
+
negative_sampling: "none"
|
47 |
+
semsup: true
|
48 |
+
# label_model_name_or_path: bert-base-uncased # prajjwal1/bert-small
|
49 |
+
label_model_name_or_path: prajjwal1/bert-small
|
50 |
+
encoder_model_type: bert
|
51 |
+
use_custom_optimizer: adamw
|
52 |
+
output_learning_rate: 1.e-4
|
53 |
+
arch_type : 2
|
54 |
+
add_label_name: true
|
55 |
+
normalize_embeddings: false
|
56 |
+
tie_weights: false
|
57 |
+
coil: true
|
58 |
+
colbert: false
|
59 |
+
# use_precomputed_embeddings: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_embs_bert_9_96.npy
|
60 |
+
token_dim: 16
|
61 |
+
label_frozen_layers: 2
|
62 |
+
|
63 |
+
TRAINING:
|
64 |
+
do_train: true
|
65 |
+
do_eval: true
|
66 |
+
do_predict: false
|
67 |
+
per_device_train_batch_size: 1
|
68 |
+
gradient_accumulation_steps: 4
|
69 |
+
per_device_eval_batch_size: 1
|
70 |
+
learning_rate: 5.e-5 # Will point to input encoder lr, if user_custom_optimizer is False
|
71 |
+
num_train_epochs: 20
|
72 |
+
save_steps: 5000
|
73 |
+
evaluation_strategy: steps
|
74 |
+
eval_steps: 1000
|
75 |
+
fp16: true
|
76 |
+
fp16_opt_level: O1
|
77 |
+
lr_scheduler_type: "linear" # defaults to 'linear'
|
78 |
+
dataloader_num_workers: 8
|
79 |
+
label_names: [labels]
|
80 |
+
scenario: "unseen_labels"
|
81 |
+
|
82 |
+
ddp_find_unused_parameters: false
|
83 |
+
max_eval_samples: 15000
|
84 |
+
max_train_samples: 30000
|
85 |
+
|
86 |
+
# ignore_data_skip: true
|
87 |
+
# one_hour_job: true
|
cleaned_code/configs/amzn13k_active_random.yml
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EXP_NAME: "semsup_descs_100ep_newds_cosine"
|
2 |
+
EXP_DESC: "SemSup Descriptions ran for 100 epochs"
|
3 |
+
|
4 |
+
DATA:
|
5 |
+
task_name: amazon13k
|
6 |
+
dataset_name: amazon13k
|
7 |
+
dataset_config_name: null
|
8 |
+
max_seq_length: 128
|
9 |
+
overwrite_output_dir: true # Set to false, if using one_hour_job
|
10 |
+
overwrite_cache: false
|
11 |
+
pad_to_max_length: true
|
12 |
+
load_from_local: true
|
13 |
+
max_train_samples: null
|
14 |
+
max_eval_samples: null
|
15 |
+
max_predict_samples: null
|
16 |
+
train_file: datasets/Amzn13K/train_split1668_random.jsonl
|
17 |
+
validation_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
18 |
+
test_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
19 |
+
label_max_seq_length: 32
|
20 |
+
# descriptions_file: datasets/Amzn13K/amzn_curie_descsriptions.json
|
21 |
+
descriptions_file: datasets/Amzn13K/amzn_descs_refined_v3_v3.json
|
22 |
+
all_labels : datasets/Amzn13K/all_labels.txt
|
23 |
+
test_labels: datasets/Amzn13K/unseen_labels_split6500_2.txt
|
24 |
+
|
25 |
+
# max_descs_per_label: 10
|
26 |
+
# contrastive_learning_samples: 5000
|
27 |
+
# cl_min_positive_descs: 1
|
28 |
+
# bm_short_file: datasets/eurlex4.3k/train_bmshort.txt
|
29 |
+
# ignore_pos_labels_file: datasets/Amzn13K/ignore_train_split1668_random_fs50.txt
|
30 |
+
|
31 |
+
MODEL:
|
32 |
+
model_name_or_path: bert-base-uncased
|
33 |
+
config_name: null
|
34 |
+
tokenizer_name: null
|
35 |
+
cache_dir: null
|
36 |
+
use_fast_tokenizer: true
|
37 |
+
model_revision: main
|
38 |
+
use_auth_token: false
|
39 |
+
ignore_mismatched_sizes: false
|
40 |
+
negative_sampling: "none"
|
41 |
+
semsup: true
|
42 |
+
# label_model_name_or_path: bert-base-uncased # prajjwal1/bert-small
|
43 |
+
label_model_name_or_path: prajjwal1/bert-small
|
44 |
+
encoder_model_type: bert
|
45 |
+
use_custom_optimizer: adamw
|
46 |
+
output_learning_rate: 1.e-4
|
47 |
+
arch_type : 2
|
48 |
+
add_label_name: true
|
49 |
+
normalize_embeddings: false
|
50 |
+
tie_weights: false
|
51 |
+
coil: true
|
52 |
+
colbert: false
|
53 |
+
# use_precomputed_embeddings: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_embs_bert_9_96.npy
|
54 |
+
token_dim: 16
|
55 |
+
label_frozen_layers: 2
|
56 |
+
|
57 |
+
TRAINING:
|
58 |
+
do_train: true
|
59 |
+
do_eval: true
|
60 |
+
do_predict: false
|
61 |
+
per_device_train_batch_size: 1
|
62 |
+
gradient_accumulation_steps: 4
|
63 |
+
per_device_eval_batch_size: 1
|
64 |
+
learning_rate: 5.e-5 # Will point to input encoder lr, if user_custom_optimizer is False
|
65 |
+
num_train_epochs: 20
|
66 |
+
save_steps: 5000
|
67 |
+
evaluation_strategy: steps
|
68 |
+
eval_steps: 2000
|
69 |
+
fp16: true
|
70 |
+
fp16_opt_level: O1
|
71 |
+
lr_scheduler_type: "linear" # defaults to 'linear'
|
72 |
+
dataloader_num_workers: 4
|
73 |
+
label_names: [labels]
|
74 |
+
scenario: "unseen_labels"
|
75 |
+
|
76 |
+
ddp_find_unused_parameters: false
|
77 |
+
max_eval_samples: 15000
|
78 |
+
max_train_samples: 30000
|
79 |
+
|
80 |
+
# ignore_data_skip: true
|
81 |
+
# one_hour_job: true
|
cleaned_code/configs/amzn13k_active_wnet.yml
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EXP_NAME: "semsup_descs_100ep_newds_cosine"
|
2 |
+
EXP_DESC: "SemSup Descriptions ran for 100 epochs"
|
3 |
+
|
4 |
+
DATA:
|
5 |
+
task_name: amazon13k
|
6 |
+
dataset_name: amazon13k
|
7 |
+
dataset_config_name: null
|
8 |
+
max_seq_length: 128
|
9 |
+
overwrite_output_dir: true # Set to false, if using one_hour_job
|
10 |
+
overwrite_cache: false
|
11 |
+
pad_to_max_length: true
|
12 |
+
load_from_local: true
|
13 |
+
max_train_samples: null
|
14 |
+
max_eval_samples: null
|
15 |
+
max_predict_samples: null
|
16 |
+
train_file: datasets/Amzn13K/train_split1228_wnet.jsonl
|
17 |
+
validation_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
18 |
+
test_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
19 |
+
label_max_seq_length: 32
|
20 |
+
# descriptions_file: datasets/Amzn13K/amzn_curie_descsriptions.json
|
21 |
+
descriptions_file: datasets/Amzn13K/amzn_descs_refined_v3_v3.json
|
22 |
+
all_labels : datasets/Amzn13K/all_labels.txt
|
23 |
+
test_labels: datasets/Amzn13K/unseen_labels_split6500_2.txt
|
24 |
+
|
25 |
+
# max_descs_per_label: 10
|
26 |
+
# contrastive_learning_samples: 5000
|
27 |
+
# cl_min_positive_descs: 1
|
28 |
+
# bm_short_file: datasets/eurlex4.3k/train_bmshort.txt
|
29 |
+
# ignore_pos_labels_file: datasets/Amzn13K/ignore_train_split6500_fs5.txt
|
30 |
+
|
31 |
+
MODEL:
|
32 |
+
model_name_or_path: bert-base-uncased
|
33 |
+
config_name: null
|
34 |
+
tokenizer_name: null
|
35 |
+
cache_dir: null
|
36 |
+
use_fast_tokenizer: true
|
37 |
+
model_revision: main
|
38 |
+
use_auth_token: false
|
39 |
+
ignore_mismatched_sizes: false
|
40 |
+
negative_sampling: "none"
|
41 |
+
semsup: true
|
42 |
+
# label_model_name_or_path: bert-base-uncased # prajjwal1/bert-small
|
43 |
+
label_model_name_or_path: prajjwal1/bert-small
|
44 |
+
encoder_model_type: bert
|
45 |
+
use_custom_optimizer: adamw
|
46 |
+
output_learning_rate: 1.e-4
|
47 |
+
arch_type : 2
|
48 |
+
add_label_name: true
|
49 |
+
normalize_embeddings: false
|
50 |
+
tie_weights: false
|
51 |
+
coil: true
|
52 |
+
colbert: false
|
53 |
+
# use_precomputed_embeddings: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_embs_bert_9_96.npy
|
54 |
+
token_dim: 16
|
55 |
+
label_frozen_layers: 2
|
56 |
+
|
57 |
+
TRAINING:
|
58 |
+
do_train: true
|
59 |
+
do_eval: true
|
60 |
+
do_predict: false
|
61 |
+
per_device_train_batch_size: 1
|
62 |
+
gradient_accumulation_steps: 4
|
63 |
+
per_device_eval_batch_size: 1
|
64 |
+
learning_rate: 5.e-5 # Will point to input encoder lr, if user_custom_optimizer is False
|
65 |
+
num_train_epochs: 20
|
66 |
+
save_steps: 5000
|
67 |
+
evaluation_strategy: steps
|
68 |
+
eval_steps: 2000
|
69 |
+
fp16: true
|
70 |
+
fp16_opt_level: O1
|
71 |
+
lr_scheduler_type: "linear" # defaults to 'linear'
|
72 |
+
dataloader_num_workers: 4
|
73 |
+
label_names: [labels]
|
74 |
+
scenario: "unseen_labels"
|
75 |
+
|
76 |
+
ddp_find_unused_parameters: false
|
77 |
+
max_eval_samples: 15000
|
78 |
+
# ignore_data_skip: true
|
79 |
+
# one_hour_job: true
|
cleaned_code/configs/amzn13k_active_wnet2.yml
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EXP_NAME: "semsup_descs_100ep_newds_cosine"
|
2 |
+
EXP_DESC: "SemSup Descriptions ran for 100 epochs"
|
3 |
+
|
4 |
+
DATA:
|
5 |
+
task_name: amazon13k
|
6 |
+
dataset_name: amazon13k
|
7 |
+
dataset_config_name: null
|
8 |
+
max_seq_length: 128
|
9 |
+
overwrite_output_dir: true # Set to false, if using one_hour_job
|
10 |
+
overwrite_cache: false
|
11 |
+
pad_to_max_length: true
|
12 |
+
load_from_local: true
|
13 |
+
max_train_samples: null
|
14 |
+
max_eval_samples: null
|
15 |
+
max_predict_samples: null
|
16 |
+
# train_file: datasets/Amzn13K/train_split2807_wnet2_fs50.jsonl
|
17 |
+
# train_file: datasets/Amzn13K/train_split2807_wnet2.jsonl
|
18 |
+
train_file: datasets/Amzn13K/train_split1106_wnet2_bot_high.jsonl
|
19 |
+
validation_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
20 |
+
test_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
21 |
+
label_max_seq_length: 96
|
22 |
+
# descriptions_file: datasets/Amzn13K/amzn_curie_descsriptions.json
|
23 |
+
# descriptions_file: datasets/Amzn13K/amzn_descs_refined_v3_v3.json
|
24 |
+
descriptions_file: datasets/Amzn13K/heir_withdescriptions_v3_v3_unseen.json
|
25 |
+
test_descriptions_file: datasets/Amzn13K/heir_withdescriptions_v3_v3.json
|
26 |
+
|
27 |
+
all_labels : datasets/Amzn13K/all_labels.txt
|
28 |
+
test_labels: datasets/Amzn13K/unseen_labels_split6500_2.txt
|
29 |
+
|
30 |
+
# max_descs_per_label: 10
|
31 |
+
# contrastive_learning_samples: 5000
|
32 |
+
# cl_min_positive_descs: 1
|
33 |
+
# bm_short_file: datasets/eurlex4.3k/train_bmshort.txt
|
34 |
+
# ignore_pos_labels_file: datasets/Amzn13K/ignore_train_split2807_wnet2_fs50.txt
|
35 |
+
|
36 |
+
MODEL:
|
37 |
+
model_name_or_path: bert-base-uncased
|
38 |
+
pretrained_label_model_path: label_model_amzn_hier_format.pt
|
39 |
+
config_name: null
|
40 |
+
tokenizer_name: null
|
41 |
+
cache_dir: null
|
42 |
+
use_fast_tokenizer: true
|
43 |
+
model_revision: main
|
44 |
+
use_auth_token: false
|
45 |
+
ignore_mismatched_sizes: false
|
46 |
+
negative_sampling: "none"
|
47 |
+
semsup: true
|
48 |
+
# label_model_name_or_path: bert-base-uncased # prajjwal1/bert-small
|
49 |
+
label_model_name_or_path: prajjwal1/bert-small
|
50 |
+
encoder_model_type: bert
|
51 |
+
use_custom_optimizer: adamw
|
52 |
+
output_learning_rate: 1.e-4
|
53 |
+
arch_type : 2
|
54 |
+
add_label_name: true
|
55 |
+
normalize_embeddings: false
|
56 |
+
tie_weights: false
|
57 |
+
coil: true
|
58 |
+
colbert: false
|
59 |
+
# use_precomputed_embeddings: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_embs_bert_9_96.npy
|
60 |
+
token_dim: 16
|
61 |
+
label_frozen_layers: 2
|
62 |
+
|
63 |
+
TRAINING:
|
64 |
+
do_train: true
|
65 |
+
do_eval: true
|
66 |
+
do_predict: false
|
67 |
+
per_device_train_batch_size: 1
|
68 |
+
gradient_accumulation_steps: 8
|
69 |
+
per_device_eval_batch_size: 1
|
70 |
+
learning_rate: 5.e-5 # Will point to input encoder lr, if user_custom_optimizer is False
|
71 |
+
num_train_epochs: 20
|
72 |
+
save_steps: 5000
|
73 |
+
evaluation_strategy: steps
|
74 |
+
eval_steps: 500
|
75 |
+
fp16: true
|
76 |
+
fp16_opt_level: O1
|
77 |
+
lr_scheduler_type: "linear" # defaults to 'linear'
|
78 |
+
dataloader_num_workers: 8
|
79 |
+
label_names: [labels]
|
80 |
+
scenario: "unseen_labels"
|
81 |
+
|
82 |
+
ddp_find_unused_parameters: false
|
83 |
+
max_eval_samples: 15000
|
84 |
+
max_train_samples: 10000
|
85 |
+
# ignore_data_skip: true
|
86 |
+
# one_hour_job: true
|
cleaned_code/configs/amzn13k_baseline.yml
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EXP_NAME: "semsup_descs_100ep_newds_cosine"
|
2 |
+
EXP_DESC: "SemSup Descriptions ran for 100 epochs"
|
3 |
+
|
4 |
+
DATA:
|
5 |
+
task_name: amazon13k
|
6 |
+
dataset_name: amazon13k
|
7 |
+
dataset_config_name: null
|
8 |
+
max_seq_length: 128
|
9 |
+
overwrite_output_dir: true
|
10 |
+
overwrite_cache: false
|
11 |
+
pad_to_max_length: true
|
12 |
+
load_from_local: true
|
13 |
+
max_train_samples: null
|
14 |
+
max_eval_samples: null
|
15 |
+
max_predict_samples: null
|
16 |
+
train_file: datasets/Amzn13K/train_split6500.jsonl
|
17 |
+
validation_file: datasets/Amzn13K/test_unseen_split6500.jsonl
|
18 |
+
test_file: datasets/Amzn13K/test_unseen_split6500.jsonl
|
19 |
+
label_max_seq_length: 8
|
20 |
+
descriptions_file: datasets/Amzn13K/names_descriptions.json
|
21 |
+
all_labels : datasets/Amzn13K/all_labels.txt
|
22 |
+
test_labels: datasets/Amzn13K/unseen_labels_split6500.txt
|
23 |
+
|
24 |
+
max_descs_per_label: 5
|
25 |
+
contrastive_learning_samples: 6000
|
26 |
+
cl_min_positive_descs: 1
|
27 |
+
# bm_short_file: datasets/eurlex4.3k/train_bmshort.txt
|
28 |
+
|
29 |
+
MODEL:
|
30 |
+
model_name_or_path: bert-base-uncased
|
31 |
+
config_name: null
|
32 |
+
tokenizer_name: null
|
33 |
+
cache_dir: null
|
34 |
+
use_fast_tokenizer: true
|
35 |
+
model_revision: main
|
36 |
+
use_auth_token: false
|
37 |
+
ignore_mismatched_sizes: false
|
38 |
+
negative_sampling: "none"
|
39 |
+
semsup: true
|
40 |
+
# label_model_name_or_path: bert-base-uncased # prajjwal1/bert-small
|
41 |
+
label_model_name_or_path: prajjwal1/bert-tiny
|
42 |
+
encoder_model_type: bert
|
43 |
+
use_custom_optimizer: adamw
|
44 |
+
output_learning_rate: 1.e-4
|
45 |
+
arch_type : 2
|
46 |
+
add_label_name: false
|
47 |
+
normalize_embeddings: false
|
48 |
+
tie_weights: false
|
49 |
+
coil: true
|
50 |
+
# use_precomputed_embeddings: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_embs_bert_9_96.npy
|
51 |
+
token_dim: 16
|
52 |
+
|
53 |
+
TRAINING:
|
54 |
+
do_train: true
|
55 |
+
do_eval: true
|
56 |
+
per_device_train_batch_size: 4
|
57 |
+
gradient_accumulation_steps: 1
|
58 |
+
per_device_eval_batch_size: 4
|
59 |
+
learning_rate: 5.e-5 # Will point to input encoder lr, if user_custom_optimizer is False
|
60 |
+
num_train_epochs: 3
|
61 |
+
save_steps: 10000
|
62 |
+
evaluation_strategy: steps
|
63 |
+
eval_steps: 1000
|
64 |
+
fp16: true
|
65 |
+
fp16_opt_level: O1
|
66 |
+
lr_scheduler_type: "linear" # defaults to 'linear'
|
67 |
+
dataloader_num_workers: 8
|
68 |
+
label_names: [labels]
|
69 |
+
scenario: "unseen_labels"
|
70 |
+
|
71 |
+
ddp_find_unused_parameters: false
|
72 |
+
max_eval_samples: 20000
|
73 |
+
|
cleaned_code/configs/amzn13k_baseline_descs.yml
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EXP_NAME: "semsup_descs_100ep_newds_cosine"
|
2 |
+
EXP_DESC: "SemSup Descriptions ran for 100 epochs"
|
3 |
+
|
4 |
+
DATA:
|
5 |
+
task_name: amazon13k
|
6 |
+
dataset_name: amazon13k
|
7 |
+
dataset_config_name: null
|
8 |
+
max_seq_length: 128
|
9 |
+
overwrite_output_dir: false # Set to false, if using one_hour_job
|
10 |
+
overwrite_cache: false
|
11 |
+
pad_to_max_length: true
|
12 |
+
load_from_local: true
|
13 |
+
max_train_samples: null
|
14 |
+
max_eval_samples: null
|
15 |
+
max_predict_samples: null
|
16 |
+
train_file: datasets/Amzn13K/train_split6500_2.jsonl
|
17 |
+
validation_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
18 |
+
test_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
19 |
+
label_max_seq_length: 32
|
20 |
+
# descriptions_file: datasets/Amzn13K/amzn_curie_descsriptions.json
|
21 |
+
# descriptions_file: datasets/Amzn13K/amzn_descs_refined_v3_v3.json
|
22 |
+
descriptions_file: datasets/Amzn13K/amzn_summ_descs.json
|
23 |
+
all_labels : datasets/Amzn13K/all_labels.txt
|
24 |
+
test_labels: datasets/Amzn13K/unseen_labels_split6500_2.txt
|
25 |
+
|
26 |
+
max_descs_per_label: 5
|
27 |
+
contrastive_learning_samples: 3500
|
28 |
+
cl_min_positive_descs: 1
|
29 |
+
# bm_short_file: datasets/eurlex4.3k/train_bmshort.txt
|
30 |
+
# ignore_pos_labels_file: datasets/Amzn13K/ignore_train_split6500_fs5.txt
|
31 |
+
|
32 |
+
MODEL:
|
33 |
+
model_name_or_path: bert-base-uncased
|
34 |
+
# pretrained_model_path: output/semsup_descs_amzn13k_web_6500_small/checkpoint-20000/pytorch_model.bin
|
35 |
+
config_name: null
|
36 |
+
tokenizer_name: null
|
37 |
+
cache_dir: null
|
38 |
+
use_fast_tokenizer: true
|
39 |
+
model_revision: main
|
40 |
+
use_auth_token: false
|
41 |
+
ignore_mismatched_sizes: false
|
42 |
+
negative_sampling: "none"
|
43 |
+
semsup: true
|
44 |
+
# label_model_name_or_path: bert-base-uncased # prajjwal1/bert-small
|
45 |
+
label_model_name_or_path: prajjwal1/bert-small
|
46 |
+
encoder_model_type: bert
|
47 |
+
use_custom_optimizer: adamw
|
48 |
+
output_learning_rate: 1.e-4
|
49 |
+
arch_type : 2
|
50 |
+
add_label_name: true
|
51 |
+
normalize_embeddings: false
|
52 |
+
tie_weights: false
|
53 |
+
coil: true
|
54 |
+
colbert: false
|
55 |
+
# use_precomputed_embeddings: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_embs_bert_9_96.npy
|
56 |
+
token_dim: 16
|
57 |
+
label_frozen_layers: 2
|
58 |
+
|
59 |
+
TRAINING:
|
60 |
+
do_train: true
|
61 |
+
do_eval: true
|
62 |
+
per_device_train_batch_size: 1
|
63 |
+
gradient_accumulation_steps: 4
|
64 |
+
per_device_eval_batch_size: 1
|
65 |
+
learning_rate: 5.e-5 # Will point to input encoder lr, if user_custom_optimizer is False
|
66 |
+
num_train_epochs: 3
|
67 |
+
save_steps: 4000
|
68 |
+
evaluation_strategy: steps
|
69 |
+
eval_steps: 30000
|
70 |
+
fp16: true
|
71 |
+
fp16_opt_level: O1
|
72 |
+
lr_scheduler_type: "linear" # defaults to 'linear'
|
73 |
+
dataloader_num_workers: 8
|
74 |
+
label_names: [labels]
|
75 |
+
scenario: "unseen_labels"
|
76 |
+
|
77 |
+
ddp_find_unused_parameters: false
|
78 |
+
max_eval_samples: 15000
|
79 |
+
ignore_data_skip: true
|
80 |
+
# one_hour_job: true
|
81 |
+
|
cleaned_code/configs/amzn13k_baseline_descs_edaaug.yml
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EXP_NAME: "semsup_descs_100ep_newds_cosine"
|
2 |
+
EXP_DESC: "SemSup Descriptions ran for 100 epochs"
|
3 |
+
|
4 |
+
DATA:
|
5 |
+
task_name: amazon13k
|
6 |
+
dataset_name: amazon13k
|
7 |
+
dataset_config_name: null
|
8 |
+
max_seq_length: 128
|
9 |
+
overwrite_output_dir: true # Set to false, if using one_hour_job
|
10 |
+
overwrite_cache: false
|
11 |
+
pad_to_max_length: true
|
12 |
+
load_from_local: true
|
13 |
+
max_train_samples: null
|
14 |
+
max_eval_samples: null
|
15 |
+
max_predict_samples: null
|
16 |
+
train_file: datasets/Amzn13K/train_split6500_2.jsonl
|
17 |
+
|
18 |
+
validation_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
19 |
+
test_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
20 |
+
label_max_seq_length: 32
|
21 |
+
descriptions_file: datasets/Amzn13K/amzn_descs_refined_v3_v3_eda_aug.json
|
22 |
+
test_descriptions_file: datasets/Amzn13K/amzn_descs_refined_v3_v3.json
|
23 |
+
|
24 |
+
all_labels : datasets/Amzn13K/all_labels.txt
|
25 |
+
test_labels: datasets/Amzn13K/unseen_labels_split6500_2.txt
|
26 |
+
|
27 |
+
max_descs_per_label: 1000
|
28 |
+
contrastive_learning_samples: 3500
|
29 |
+
cl_min_positive_descs: 1
|
30 |
+
|
31 |
+
MODEL:
|
32 |
+
model_name_or_path: bert-base-uncased
|
33 |
+
config_name: null
|
34 |
+
tokenizer_name: null
|
35 |
+
cache_dir: null
|
36 |
+
use_fast_tokenizer: true
|
37 |
+
model_revision: main
|
38 |
+
use_auth_token: false
|
39 |
+
ignore_mismatched_sizes: false
|
40 |
+
negative_sampling: "none"
|
41 |
+
semsup: true
|
42 |
+
label_model_name_or_path: prajjwal1/bert-small
|
43 |
+
encoder_model_type: bert
|
44 |
+
use_custom_optimizer: adamw
|
45 |
+
output_learning_rate: 1.e-4
|
46 |
+
arch_type : 2
|
47 |
+
add_label_name: true
|
48 |
+
normalize_embeddings: false
|
49 |
+
tie_weights: false
|
50 |
+
coil: true
|
51 |
+
colbert: false
|
52 |
+
token_dim: 16
|
53 |
+
label_frozen_layers: 2
|
54 |
+
|
55 |
+
TRAINING:
|
56 |
+
do_train: true
|
57 |
+
do_eval: true
|
58 |
+
do_predict: false
|
59 |
+
per_device_train_batch_size: 1
|
60 |
+
gradient_accumulation_steps: 4
|
61 |
+
per_device_eval_batch_size: 1
|
62 |
+
learning_rate: 5.e-5 # Will point to input encoder lr, if user_custom_optimizer is False
|
63 |
+
num_train_epochs: 3
|
64 |
+
save_steps: 5000
|
65 |
+
evaluation_strategy: steps
|
66 |
+
eval_steps: 2000
|
67 |
+
fp16: true
|
68 |
+
fp16_opt_level: O1
|
69 |
+
lr_scheduler_type: "linear" # defaults to 'linear'
|
70 |
+
dataloader_num_workers: 4
|
71 |
+
label_names: [labels]
|
72 |
+
scenario: "unseen_labels"
|
73 |
+
|
74 |
+
ddp_find_unused_parameters: false
|
75 |
+
max_eval_samples: 15000
|
cleaned_code/configs/amzn13k_baseline_descs_fullsup.yml
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EXP_NAME: "semsup_descs_100ep_newds_cosine"
|
2 |
+
EXP_DESC: "SemSup Descriptions ran for 100 epochs"
|
3 |
+
|
4 |
+
DATA:
|
5 |
+
task_name: amazon13k
|
6 |
+
dataset_name: amazon13k
|
7 |
+
dataset_config_name: null
|
8 |
+
max_seq_length: 128
|
9 |
+
overwrite_output_dir: true
|
10 |
+
overwrite_cache: false
|
11 |
+
pad_to_max_length: true
|
12 |
+
load_from_local: true
|
13 |
+
max_train_samples: null
|
14 |
+
max_eval_samples: null
|
15 |
+
max_predict_samples: null
|
16 |
+
train_file: datasets/Amzn13K/train.jsonl
|
17 |
+
validation_file: datasets/Amzn13K/test.jsonl
|
18 |
+
test_file: datasets/Amzn13K/test.jsonl
|
19 |
+
label_max_seq_length: 32
|
20 |
+
# descriptions_file: datasets/Amzn13K/amzn_curie_descsriptions.json
|
21 |
+
descriptions_file: datasets/Amzn13K/amzn_descs_refined_v3_v3.json
|
22 |
+
# all_labels : datasets/Amzn13K/all_labels.txt
|
23 |
+
# test_labels: datasets/Amzn13K/unseen_labels_split6500_2.txt
|
24 |
+
|
25 |
+
# max_descs_per_label: 10
|
26 |
+
contrastive_learning_samples: 5000
|
27 |
+
cl_min_positive_descs: 1
|
28 |
+
# bm_short_file: datasets/eurlex4.3k/train_bmshort.txt
|
29 |
+
|
30 |
+
MODEL:
|
31 |
+
model_name_or_path: bert-base-uncased
|
32 |
+
config_name: null
|
33 |
+
tokenizer_name: null
|
34 |
+
cache_dir: null
|
35 |
+
use_fast_tokenizer: true
|
36 |
+
model_revision: main
|
37 |
+
use_auth_token: false
|
38 |
+
ignore_mismatched_sizes: false
|
39 |
+
negative_sampling: "none"
|
40 |
+
semsup: true
|
41 |
+
# label_model_name_or_path: bert-base-uncased # prajjwal1/bert-small
|
42 |
+
label_model_name_or_path: prajjwal1/bert-tiny
|
43 |
+
encoder_model_type: bert
|
44 |
+
use_custom_optimizer: adamw
|
45 |
+
output_learning_rate: 1.e-4
|
46 |
+
arch_type : 2
|
47 |
+
add_label_name: true
|
48 |
+
normalize_embeddings: false
|
49 |
+
tie_weights: false
|
50 |
+
coil: true
|
51 |
+
# use_precomputed_embeddings: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_embs_bert_9_96.npy
|
52 |
+
token_dim: 16
|
53 |
+
|
54 |
+
TRAINING:
|
55 |
+
do_train: true
|
56 |
+
do_eval: true
|
57 |
+
per_device_train_batch_size: 4
|
58 |
+
gradient_accumulation_steps: 1
|
59 |
+
per_device_eval_batch_size: 2
|
60 |
+
learning_rate: 5.e-5 # Will point to input encoder lr, if user_custom_optimizer is False
|
61 |
+
num_train_epochs: 3
|
62 |
+
save_steps: 30000
|
63 |
+
evaluation_strategy: steps
|
64 |
+
eval_steps: 5000
|
65 |
+
fp16: true
|
66 |
+
fp16_opt_level: O1
|
67 |
+
lr_scheduler_type: "linear" # defaults to 'linear'
|
68 |
+
dataloader_num_workers: 8
|
69 |
+
label_names: [labels]
|
70 |
+
scenario: "seen"
|
71 |
+
|
72 |
+
ddp_find_unused_parameters: false
|
73 |
+
max_eval_samples: 15000
|
74 |
+
|
cleaned_code/configs/amzn13k_baseline_descs_masked_0.0.yml
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EXP_NAME: "semsup_descs_100ep_newds_cosine"
|
2 |
+
EXP_DESC: "SemSup Descriptions ran for 100 epochs"
|
3 |
+
|
4 |
+
DATA:
|
5 |
+
task_name: amazon13k
|
6 |
+
dataset_name: amazon13k
|
7 |
+
dataset_config_name: null
|
8 |
+
max_seq_length: 128
|
9 |
+
overwrite_output_dir: true # Set to false, if using one_hour_job
|
10 |
+
overwrite_cache: false
|
11 |
+
pad_to_max_length: true
|
12 |
+
load_from_local: true
|
13 |
+
max_train_samples: null
|
14 |
+
max_eval_samples: null
|
15 |
+
max_predict_samples: null
|
16 |
+
train_file: datasets/Amzn13K/train_split6500_2.jsonl
|
17 |
+
|
18 |
+
validation_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
19 |
+
test_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
20 |
+
label_max_seq_length: 32
|
21 |
+
descriptions_file: datasets/Amzn13K/amzn_descs_refined_v3_v3_masked_0.0.json
|
22 |
+
test_descriptions_file: datasets/Amzn13K/amzn_descs_refined_v3_v3.json
|
23 |
+
|
24 |
+
all_labels : datasets/Amzn13K/all_labels.txt
|
25 |
+
test_labels: datasets/Amzn13K/unseen_labels_split6500_2.txt
|
26 |
+
|
27 |
+
max_descs_per_label: 1000
|
28 |
+
contrastive_learning_samples: 3500
|
29 |
+
cl_min_positive_descs: 1
|
30 |
+
|
31 |
+
MODEL:
|
32 |
+
model_name_or_path: bert-base-uncased
|
33 |
+
config_name: null
|
34 |
+
tokenizer_name: null
|
35 |
+
cache_dir: null
|
36 |
+
use_fast_tokenizer: true
|
37 |
+
model_revision: main
|
38 |
+
use_auth_token: false
|
39 |
+
ignore_mismatched_sizes: false
|
40 |
+
negative_sampling: "none"
|
41 |
+
semsup: true
|
42 |
+
label_model_name_or_path: prajjwal1/bert-small
|
43 |
+
encoder_model_type: bert
|
44 |
+
use_custom_optimizer: adamw
|
45 |
+
output_learning_rate: 1.e-4
|
46 |
+
arch_type : 2
|
47 |
+
add_label_name: true
|
48 |
+
normalize_embeddings: false
|
49 |
+
tie_weights: false
|
50 |
+
coil: true
|
51 |
+
colbert: false
|
52 |
+
token_dim: 16
|
53 |
+
label_frozen_layers: 2
|
54 |
+
|
55 |
+
TRAINING:
|
56 |
+
do_train: true
|
57 |
+
do_eval: true
|
58 |
+
do_predict: false
|
59 |
+
per_device_train_batch_size: 1
|
60 |
+
gradient_accumulation_steps: 4
|
61 |
+
per_device_eval_batch_size: 1
|
62 |
+
learning_rate: 5.e-5 # Will point to input encoder lr, if user_custom_optimizer is False
|
63 |
+
num_train_epochs: 3
|
64 |
+
save_steps: 5000
|
65 |
+
evaluation_strategy: steps
|
66 |
+
eval_steps: 2000
|
67 |
+
fp16: true
|
68 |
+
fp16_opt_level: O1
|
69 |
+
lr_scheduler_type: "linear" # defaults to 'linear'
|
70 |
+
dataloader_num_workers: 4
|
71 |
+
label_names: [labels]
|
72 |
+
scenario: "unseen_labels"
|
73 |
+
|
74 |
+
ddp_find_unused_parameters: false
|
75 |
+
max_eval_samples: 15000
|
cleaned_code/configs/amzn13k_baseline_descs_masked_0.2.yml
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EXP_NAME: "semsup_descs_100ep_newds_cosine"
|
2 |
+
EXP_DESC: "SemSup Descriptions ran for 100 epochs"
|
3 |
+
|
4 |
+
DATA:
|
5 |
+
task_name: amazon13k
|
6 |
+
dataset_name: amazon13k
|
7 |
+
dataset_config_name: null
|
8 |
+
max_seq_length: 128
|
9 |
+
overwrite_output_dir: true # Set to false, if using one_hour_job
|
10 |
+
overwrite_cache: false
|
11 |
+
pad_to_max_length: true
|
12 |
+
load_from_local: true
|
13 |
+
max_train_samples: null
|
14 |
+
max_eval_samples: null
|
15 |
+
max_predict_samples: null
|
16 |
+
train_file: datasets/Amzn13K/train_split6500_2.jsonl
|
17 |
+
|
18 |
+
validation_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
19 |
+
test_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
20 |
+
label_max_seq_length: 32
|
21 |
+
descriptions_file: datasets/Amzn13K/amzn_descs_refined_v3_v3_masked_0.2.json
|
22 |
+
test_descriptions_file: datasets/Amzn13K/amzn_descs_refined_v3_v3.json
|
23 |
+
|
24 |
+
all_labels : datasets/Amzn13K/all_labels.txt
|
25 |
+
test_labels: datasets/Amzn13K/unseen_labels_split6500_2.txt
|
26 |
+
|
27 |
+
max_descs_per_label: 1000
|
28 |
+
contrastive_learning_samples: 3500
|
29 |
+
cl_min_positive_descs: 1
|
30 |
+
|
31 |
+
MODEL:
|
32 |
+
model_name_or_path: bert-base-uncased
|
33 |
+
config_name: null
|
34 |
+
tokenizer_name: null
|
35 |
+
cache_dir: null
|
36 |
+
use_fast_tokenizer: true
|
37 |
+
model_revision: main
|
38 |
+
use_auth_token: false
|
39 |
+
ignore_mismatched_sizes: false
|
40 |
+
negative_sampling: "none"
|
41 |
+
semsup: true
|
42 |
+
label_model_name_or_path: prajjwal1/bert-small
|
43 |
+
encoder_model_type: bert
|
44 |
+
use_custom_optimizer: adamw
|
45 |
+
output_learning_rate: 1.e-4
|
46 |
+
arch_type : 2
|
47 |
+
add_label_name: true
|
48 |
+
normalize_embeddings: false
|
49 |
+
tie_weights: false
|
50 |
+
coil: true
|
51 |
+
colbert: false
|
52 |
+
token_dim: 16
|
53 |
+
label_frozen_layers: 2
|
54 |
+
|
55 |
+
TRAINING:
|
56 |
+
do_train: true
|
57 |
+
do_eval: true
|
58 |
+
do_predict: false
|
59 |
+
per_device_train_batch_size: 1
|
60 |
+
gradient_accumulation_steps: 4
|
61 |
+
per_device_eval_batch_size: 1
|
62 |
+
learning_rate: 5.e-5 # Will point to input encoder lr, if user_custom_optimizer is False
|
63 |
+
num_train_epochs: 3
|
64 |
+
save_steps: 5000
|
65 |
+
evaluation_strategy: steps
|
66 |
+
eval_steps: 2000
|
67 |
+
fp16: true
|
68 |
+
fp16_opt_level: O1
|
69 |
+
lr_scheduler_type: "linear" # defaults to 'linear'
|
70 |
+
dataloader_num_workers: 4
|
71 |
+
label_names: [labels]
|
72 |
+
scenario: "unseen_labels"
|
73 |
+
|
74 |
+
ddp_find_unused_parameters: false
|
75 |
+
max_eval_samples: 15000
|
cleaned_code/configs/amzn13k_baseline_descs_masked_0.5.yml
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EXP_NAME: "semsup_descs_100ep_newds_cosine"
|
2 |
+
EXP_DESC: "SemSup Descriptions ran for 100 epochs"
|
3 |
+
|
4 |
+
DATA:
|
5 |
+
task_name: amazon13k
|
6 |
+
dataset_name: amazon13k
|
7 |
+
dataset_config_name: null
|
8 |
+
max_seq_length: 128
|
9 |
+
overwrite_output_dir: true # Set to false, if using one_hour_job
|
10 |
+
overwrite_cache: false
|
11 |
+
pad_to_max_length: true
|
12 |
+
load_from_local: true
|
13 |
+
max_train_samples: null
|
14 |
+
max_eval_samples: null
|
15 |
+
max_predict_samples: null
|
16 |
+
train_file: datasets/Amzn13K/train_split6500_2.jsonl
|
17 |
+
|
18 |
+
validation_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
19 |
+
test_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
20 |
+
label_max_seq_length: 32
|
21 |
+
descriptions_file: datasets/Amzn13K/amzn_descs_refined_v3_v3_masked_0.5.json
|
22 |
+
test_descriptions_file: datasets/Amzn13K/amzn_descs_refined_v3_v3.json
|
23 |
+
|
24 |
+
all_labels : datasets/Amzn13K/all_labels.txt
|
25 |
+
test_labels: datasets/Amzn13K/unseen_labels_split6500_2.txt
|
26 |
+
|
27 |
+
max_descs_per_label: 1000
|
28 |
+
contrastive_learning_samples: 3500
|
29 |
+
cl_min_positive_descs: 1
|
30 |
+
|
31 |
+
MODEL:
|
32 |
+
model_name_or_path: bert-base-uncased
|
33 |
+
config_name: null
|
34 |
+
tokenizer_name: null
|
35 |
+
cache_dir: null
|
36 |
+
use_fast_tokenizer: true
|
37 |
+
model_revision: main
|
38 |
+
use_auth_token: false
|
39 |
+
ignore_mismatched_sizes: false
|
40 |
+
negative_sampling: "none"
|
41 |
+
semsup: true
|
42 |
+
label_model_name_or_path: prajjwal1/bert-small
|
43 |
+
encoder_model_type: bert
|
44 |
+
use_custom_optimizer: adamw
|
45 |
+
output_learning_rate: 1.e-4
|
46 |
+
arch_type : 2
|
47 |
+
add_label_name: true
|
48 |
+
normalize_embeddings: false
|
49 |
+
tie_weights: false
|
50 |
+
coil: true
|
51 |
+
colbert: false
|
52 |
+
token_dim: 16
|
53 |
+
label_frozen_layers: 2
|
54 |
+
|
55 |
+
TRAINING:
|
56 |
+
do_train: true
|
57 |
+
do_eval: true
|
58 |
+
do_predict: false
|
59 |
+
per_device_train_batch_size: 1
|
60 |
+
gradient_accumulation_steps: 4
|
61 |
+
per_device_eval_batch_size: 1
|
62 |
+
learning_rate: 5.e-5 # Will point to input encoder lr, if user_custom_optimizer is False
|
63 |
+
num_train_epochs: 3
|
64 |
+
save_steps: 5000
|
65 |
+
evaluation_strategy: steps
|
66 |
+
eval_steps: 2000
|
67 |
+
fp16: true
|
68 |
+
fp16_opt_level: O1
|
69 |
+
lr_scheduler_type: "linear" # defaults to 'linear'
|
70 |
+
dataloader_num_workers: 4
|
71 |
+
label_names: [labels]
|
72 |
+
scenario: "unseen_labels"
|
73 |
+
|
74 |
+
ddp_find_unused_parameters: false
|
75 |
+
max_eval_samples: 15000
|
cleaned_code/configs/amzn13k_baseline_descs_masked_0.9.yml
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EXP_NAME: "semsup_descs_100ep_newds_cosine"
|
2 |
+
EXP_DESC: "SemSup Descriptions ran for 100 epochs"
|
3 |
+
|
4 |
+
DATA:
|
5 |
+
task_name: amazon13k
|
6 |
+
dataset_name: amazon13k
|
7 |
+
dataset_config_name: null
|
8 |
+
max_seq_length: 128
|
9 |
+
overwrite_output_dir: true # Set to false, if using one_hour_job
|
10 |
+
overwrite_cache: false
|
11 |
+
pad_to_max_length: true
|
12 |
+
load_from_local: true
|
13 |
+
max_train_samples: null
|
14 |
+
max_eval_samples: null
|
15 |
+
max_predict_samples: null
|
16 |
+
train_file: datasets/Amzn13K/train_split6500_2.jsonl
|
17 |
+
|
18 |
+
validation_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
19 |
+
test_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
20 |
+
label_max_seq_length: 32
|
21 |
+
descriptions_file: datasets/Amzn13K/amzn_descs_refined_v3_v3_masked_0.9.json
|
22 |
+
test_descriptions_file: datasets/Amzn13K/amzn_descs_refined_v3_v3.json
|
23 |
+
|
24 |
+
all_labels : datasets/Amzn13K/all_labels.txt
|
25 |
+
test_labels: datasets/Amzn13K/unseen_labels_split6500_2.txt
|
26 |
+
|
27 |
+
max_descs_per_label: 1000
|
28 |
+
contrastive_learning_samples: 3500
|
29 |
+
cl_min_positive_descs: 1
|
30 |
+
|
31 |
+
MODEL:
|
32 |
+
model_name_or_path: bert-base-uncased
|
33 |
+
config_name: null
|
34 |
+
tokenizer_name: null
|
35 |
+
cache_dir: null
|
36 |
+
use_fast_tokenizer: true
|
37 |
+
model_revision: main
|
38 |
+
use_auth_token: false
|
39 |
+
ignore_mismatched_sizes: false
|
40 |
+
negative_sampling: "none"
|
41 |
+
semsup: true
|
42 |
+
label_model_name_or_path: prajjwal1/bert-small
|
43 |
+
encoder_model_type: bert
|
44 |
+
use_custom_optimizer: adamw
|
45 |
+
output_learning_rate: 1.e-4
|
46 |
+
arch_type : 2
|
47 |
+
add_label_name: true
|
48 |
+
normalize_embeddings: false
|
49 |
+
tie_weights: false
|
50 |
+
coil: true
|
51 |
+
colbert: false
|
52 |
+
token_dim: 16
|
53 |
+
label_frozen_layers: 2
|
54 |
+
|
55 |
+
TRAINING:
|
56 |
+
do_train: true
|
57 |
+
do_eval: true
|
58 |
+
do_predict: false
|
59 |
+
per_device_train_batch_size: 1
|
60 |
+
gradient_accumulation_steps: 4
|
61 |
+
per_device_eval_batch_size: 1
|
62 |
+
learning_rate: 5.e-5 # Will point to input encoder lr, if user_custom_optimizer is False
|
63 |
+
num_train_epochs: 3
|
64 |
+
save_steps: 5000
|
65 |
+
evaluation_strategy: steps
|
66 |
+
eval_steps: 2000
|
67 |
+
fp16: true
|
68 |
+
fp16_opt_level: O1
|
69 |
+
lr_scheduler_type: "linear" # defaults to 'linear'
|
70 |
+
dataloader_num_workers: 4
|
71 |
+
label_names: [labels]
|
72 |
+
scenario: "unseen_labels"
|
73 |
+
|
74 |
+
ddp_find_unused_parameters: false
|
75 |
+
max_eval_samples: 15000
|
cleaned_code/configs/amzn13k_baseline_descs_merge.yml
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EXP_NAME: "semsup_descs_100ep_newds_cosine"
|
2 |
+
EXP_DESC: "SemSup Descriptions ran for 100 epochs"
|
3 |
+
|
4 |
+
DATA:
|
5 |
+
task_name: amazon13k
|
6 |
+
dataset_name: amazon13k
|
7 |
+
dataset_config_name: null
|
8 |
+
max_seq_length: 128
|
9 |
+
overwrite_output_dir: true
|
10 |
+
overwrite_cache: false
|
11 |
+
pad_to_max_length: true
|
12 |
+
load_from_local: true
|
13 |
+
max_train_samples: null
|
14 |
+
max_eval_samples: null
|
15 |
+
max_predict_samples: null
|
16 |
+
train_file: datasets/Amzn13K/train_split6500_2.jsonl
|
17 |
+
validation_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
18 |
+
test_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
19 |
+
label_max_seq_length: 80
|
20 |
+
# descriptions_file: datasets/Amzn13K/amzn_curie_descsriptions.json
|
21 |
+
descriptions_file: datasets/Amzn13K/amzn_descs_refined_v3_v3_merge3.json
|
22 |
+
all_labels : datasets/Amzn13K/all_labels.txt
|
23 |
+
test_labels: datasets/Amzn13K/unseen_labels_split6500_2.txt
|
24 |
+
|
25 |
+
# max_descs_per_label: 10
|
26 |
+
contrastive_learning_samples: 5000
|
27 |
+
cl_min_positive_descs: 1
|
28 |
+
# bm_short_file: datasets/eurlex4.3k/train_bmshort.txt
|
29 |
+
|
30 |
+
MODEL:
|
31 |
+
model_name_or_path: bert-base-uncased
|
32 |
+
config_name: null
|
33 |
+
tokenizer_name: null
|
34 |
+
cache_dir: null
|
35 |
+
use_fast_tokenizer: true
|
36 |
+
model_revision: main
|
37 |
+
use_auth_token: false
|
38 |
+
ignore_mismatched_sizes: false
|
39 |
+
negative_sampling: "none"
|
40 |
+
semsup: true
|
41 |
+
# label_model_name_or_path: bert-base-uncased # prajjwal1/bert-small
|
42 |
+
label_model_name_or_path: prajjwal1/bert-tiny
|
43 |
+
encoder_model_type: bert
|
44 |
+
use_custom_optimizer: adamw
|
45 |
+
output_learning_rate: 1.e-4
|
46 |
+
arch_type : 2
|
47 |
+
add_label_name: true
|
48 |
+
normalize_embeddings: false
|
49 |
+
tie_weights: false
|
50 |
+
coil: true
|
51 |
+
colbert: true
|
52 |
+
# use_precomputed_embeddings: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_embs_bert_9_96.npy
|
53 |
+
token_dim: 16
|
54 |
+
label_frozen_layers: 2
|
55 |
+
|
56 |
+
TRAINING:
|
57 |
+
do_train: true
|
58 |
+
do_eval: true
|
59 |
+
per_device_train_batch_size: 2
|
60 |
+
gradient_accumulation_steps: 4
|
61 |
+
per_device_eval_batch_size: 2
|
62 |
+
learning_rate: 5.e-5 # Will point to input encoder lr, if user_custom_optimizer is False
|
63 |
+
num_train_epochs: 3
|
64 |
+
save_steps: 10000
|
65 |
+
evaluation_strategy: steps
|
66 |
+
eval_steps: 1000
|
67 |
+
fp16: true
|
68 |
+
fp16_opt_level: O1
|
69 |
+
lr_scheduler_type: "linear" # defaults to 'linear'
|
70 |
+
dataloader_num_workers: 8
|
71 |
+
label_names: [labels]
|
72 |
+
scenario: "unseen_labels"
|
73 |
+
|
74 |
+
ddp_find_unused_parameters: false
|
75 |
+
max_eval_samples: 15000
|
76 |
+
|
cleaned_code/configs/amzn13k_baseline_fs.yml
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EXP_NAME: "semsup_descs_100ep_newds_cosine"
|
2 |
+
EXP_DESC: "SemSup Descriptions ran for 100 epochs"
|
3 |
+
|
4 |
+
DATA:
|
5 |
+
task_name: amazon13k
|
6 |
+
dataset_name: amazon13k
|
7 |
+
dataset_config_name: null
|
8 |
+
max_seq_length: 128
|
9 |
+
overwrite_output_dir: true # Set to false, if using one_hour_job
|
10 |
+
overwrite_cache: false
|
11 |
+
pad_to_max_length: true
|
12 |
+
load_from_local: true
|
13 |
+
max_train_samples: null
|
14 |
+
max_eval_samples: null
|
15 |
+
max_predict_samples: null
|
16 |
+
train_file: datasets/Amzn13K/train_split6500_fs100.jsonl
|
17 |
+
validation_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
18 |
+
test_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
19 |
+
label_max_seq_length: 32
|
20 |
+
# descriptions_file: datasets/Amzn13K/amzn_curie_descsriptions.json
|
21 |
+
descriptions_file: datasets/Amzn13K/amzn_descs_refined_v3_v3.json
|
22 |
+
all_labels : datasets/Amzn13K/all_labels.txt
|
23 |
+
test_labels: datasets/Amzn13K/unseen_labels_split6500_2.txt
|
24 |
+
|
25 |
+
# max_descs_per_label: 10
|
26 |
+
# contrastive_learning_samples: 5000
|
27 |
+
# cl_min_positive_descs: 1
|
28 |
+
# bm_short_file: datasets/eurlex4.3k/train_bmshort.txt
|
29 |
+
ignore_pos_labels_file: datasets/Amzn13K/ignore_train_split6500_fs100.txt
|
30 |
+
|
31 |
+
MODEL:
|
32 |
+
model_name_or_path: bert-base-uncased
|
33 |
+
pretrained_model_path: output/semsup_descs_amzn13k_web_6500_small/checkpoint-20000/pytorch_model.bin
|
34 |
+
config_name: null
|
35 |
+
tokenizer_name: null
|
36 |
+
cache_dir: null
|
37 |
+
use_fast_tokenizer: true
|
38 |
+
model_revision: main
|
39 |
+
use_auth_token: false
|
40 |
+
ignore_mismatched_sizes: false
|
41 |
+
negative_sampling: "none"
|
42 |
+
semsup: true
|
43 |
+
# label_model_name_or_path: bert-base-uncased # prajjwal1/bert-small
|
44 |
+
label_model_name_or_path: prajjwal1/bert-small
|
45 |
+
encoder_model_type: bert
|
46 |
+
use_custom_optimizer: adamw
|
47 |
+
output_learning_rate: 5.e-5
|
48 |
+
arch_type : 2
|
49 |
+
add_label_name: true
|
50 |
+
normalize_embeddings: false
|
51 |
+
tie_weights: false
|
52 |
+
coil: true
|
53 |
+
colbert: false
|
54 |
+
# use_precomputed_embeddings: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_embs_bert_9_96.npy
|
55 |
+
token_dim: 16
|
56 |
+
label_frozen_layers: 2
|
57 |
+
|
58 |
+
TRAINING:
|
59 |
+
do_train: true
|
60 |
+
do_eval: true
|
61 |
+
do_predict: false
|
62 |
+
per_device_train_batch_size: 1
|
63 |
+
gradient_accumulation_steps: 8
|
64 |
+
per_device_eval_batch_size: 1
|
65 |
+
learning_rate: 2.e-5 # Will point to input encoder lr, if user_custom_optimizer is False
|
66 |
+
num_train_epochs: 10
|
67 |
+
save_steps: 5000
|
68 |
+
evaluation_strategy: steps
|
69 |
+
eval_steps: 500
|
70 |
+
fp16: true
|
71 |
+
fp16_opt_level: O1
|
72 |
+
lr_scheduler_type: "linear" # defaults to 'linear'
|
73 |
+
dataloader_num_workers: 4
|
74 |
+
label_names: [labels]
|
75 |
+
scenario: "unseen_labels"
|
76 |
+
|
77 |
+
ddp_find_unused_parameters: false
|
78 |
+
max_eval_samples: 15000
|
79 |
+
# ignore_data_skip: true
|
80 |
+
# one_hour_job: true
|
cleaned_code/configs/amzn13k_baseline_fs2.yml
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EXP_NAME: "semsup_descs_100ep_newds_cosine"
|
2 |
+
EXP_DESC: "SemSup Descriptions ran for 100 epochs"
|
3 |
+
|
4 |
+
DATA:
|
5 |
+
task_name: amazon13k
|
6 |
+
dataset_name: amazon13k
|
7 |
+
dataset_config_name: null
|
8 |
+
max_seq_length: 128
|
9 |
+
overwrite_output_dir: false # Set to false, if using one_hour_job
|
10 |
+
overwrite_cache: false
|
11 |
+
pad_to_max_length: true
|
12 |
+
load_from_local: true
|
13 |
+
max_train_samples: null
|
14 |
+
max_eval_samples: null
|
15 |
+
max_predict_samples: null
|
16 |
+
train_file: datasets/Amzn13K/train_split6500_fs5.jsonl
|
17 |
+
validation_file: datasets/Amzn13K/test_unseen_split6500_fs5.jsonl
|
18 |
+
test_file: datasets/Amzn13K/test_unseen_split6500_fs5.jsonl
|
19 |
+
label_max_seq_length: 32
|
20 |
+
# descriptions_file: datasets/Amzn13K/amzn_curie_descsriptions.json
|
21 |
+
descriptions_file: datasets/Amzn13K/amzn_descs_refined_v3_v3.json
|
22 |
+
all_labels : datasets/Amzn13K/all_labels.txt
|
23 |
+
test_labels: datasets/Amzn13K/unseen_labels_split6500_fs5.txt
|
24 |
+
|
25 |
+
# max_descs_per_label: 10
|
26 |
+
# contrastive_learning_samples: 5000
|
27 |
+
# cl_min_positive_descs: 1
|
28 |
+
# bm_short_file: datasets/eurlex4.3k/train_bmshort.txt
|
29 |
+
# ignore_pos_labels_file: datasets/Amzn13K/ignore_train_split6500_fs5.txt
|
30 |
+
|
31 |
+
MODEL:
|
32 |
+
model_name_or_path: bert-base-uncased
|
33 |
+
pretrained_model_path: output/semsup_descs_amzn13k_web_6500_small/checkpoint-20000/pytorch_model.bin
|
34 |
+
config_name: null
|
35 |
+
tokenizer_name: null
|
36 |
+
cache_dir: null
|
37 |
+
use_fast_tokenizer: true
|
38 |
+
model_revision: main
|
39 |
+
use_auth_token: false
|
40 |
+
ignore_mismatched_sizes: false
|
41 |
+
negative_sampling: "none"
|
42 |
+
semsup: true
|
43 |
+
# label_model_name_or_path: bert-base-uncased # prajjwal1/bert-small
|
44 |
+
label_model_name_or_path: prajjwal1/bert-small
|
45 |
+
encoder_model_type: bert
|
46 |
+
use_custom_optimizer: adamw
|
47 |
+
output_learning_rate: 5.e-5
|
48 |
+
arch_type : 2
|
49 |
+
add_label_name: true
|
50 |
+
normalize_embeddings: false
|
51 |
+
tie_weights: false
|
52 |
+
coil: true
|
53 |
+
colbert: true
|
54 |
+
# use_precomputed_embeddings: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_embs_bert_9_96.npy
|
55 |
+
token_dim: 16
|
56 |
+
label_frozen_layers: 2
|
57 |
+
|
58 |
+
TRAINING:
|
59 |
+
do_train: true
|
60 |
+
do_eval: true
|
61 |
+
do_predict: false
|
62 |
+
per_device_train_batch_size: 1
|
63 |
+
gradient_accumulation_steps: 4
|
64 |
+
per_device_eval_batch_size: 1
|
65 |
+
learning_rate: 2.e-5 # Will point to input encoder lr, if user_custom_optimizer is False
|
66 |
+
num_train_epochs: 3
|
67 |
+
save_steps: 10000
|
68 |
+
evaluation_strategy: steps
|
69 |
+
eval_steps: 500
|
70 |
+
fp16: true
|
71 |
+
fp16_opt_level: O1
|
72 |
+
lr_scheduler_type: "linear" # defaults to 'linear'
|
73 |
+
dataloader_num_workers: 8
|
74 |
+
label_names: [labels]
|
75 |
+
scenario: "unseen_labels"
|
76 |
+
|
77 |
+
ddp_find_unused_parameters: false
|
78 |
+
max_eval_samples: 15000
|
79 |
+
# ignore_data_skip: true
|
80 |
+
# one_hour_job: true
|
cleaned_code/configs/amzn13k_baseline_fs5.yml
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EXP_NAME: "semsup_descs_100ep_newds_cosine"
|
2 |
+
EXP_DESC: "SemSup Descriptions ran for 100 epochs"
|
3 |
+
|
4 |
+
DATA:
|
5 |
+
task_name: amazon13k
|
6 |
+
dataset_name: amazon13k
|
7 |
+
dataset_config_name: null
|
8 |
+
max_seq_length: 128
|
9 |
+
overwrite_output_dir: true # Set to false, if using one_hour_job
|
10 |
+
overwrite_cache: false
|
11 |
+
pad_to_max_length: true
|
12 |
+
load_from_local: true
|
13 |
+
max_train_samples: null
|
14 |
+
max_eval_samples: null
|
15 |
+
max_predict_samples: null
|
16 |
+
train_file: datasets/Amzn13K/train_split6500_fs5.jsonl
|
17 |
+
validation_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
18 |
+
test_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
19 |
+
label_max_seq_length: 32
|
20 |
+
# descriptions_file: datasets/Amzn13K/amzn_curie_descsriptions.json
|
21 |
+
descriptions_file: datasets/Amzn13K/amzn_descs_refined_v3_v3.json
|
22 |
+
all_labels : datasets/Amzn13K/all_labels.txt
|
23 |
+
test_labels: datasets/Amzn13K/unseen_labels_split6500_2.txt
|
24 |
+
|
25 |
+
# max_descs_per_label: 10
|
26 |
+
# contrastive_learning_samples: 5000
|
27 |
+
# cl_min_positive_descs: 1
|
28 |
+
# bm_short_file: datasets/eurlex4.3k/train_bmshort.txt
|
29 |
+
ignore_pos_labels_file: datasets/Amzn13K/ignore_train_split6500_fs5.txt
|
30 |
+
|
31 |
+
MODEL:
|
32 |
+
model_name_or_path: bert-base-uncased
|
33 |
+
pretrained_model_path: output/semsup_descs_amzn13k_web_6500_small/checkpoint-20000/pytorch_model.bin
|
34 |
+
config_name: null
|
35 |
+
tokenizer_name: null
|
36 |
+
cache_dir: null
|
37 |
+
use_fast_tokenizer: true
|
38 |
+
model_revision: main
|
39 |
+
use_auth_token: false
|
40 |
+
ignore_mismatched_sizes: false
|
41 |
+
negative_sampling: "none"
|
42 |
+
semsup: true
|
43 |
+
# label_model_name_or_path: bert-base-uncased # prajjwal1/bert-small
|
44 |
+
label_model_name_or_path: prajjwal1/bert-small
|
45 |
+
encoder_model_type: bert
|
46 |
+
use_custom_optimizer: adamw
|
47 |
+
output_learning_rate: 5.e-5
|
48 |
+
arch_type : 2
|
49 |
+
add_label_name: true
|
50 |
+
normalize_embeddings: false
|
51 |
+
tie_weights: false
|
52 |
+
coil: true
|
53 |
+
colbert: false
|
54 |
+
# use_precomputed_embeddings: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_embs_bert_9_96.npy
|
55 |
+
token_dim: 16
|
56 |
+
label_frozen_layers: 2
|
57 |
+
|
58 |
+
TRAINING:
|
59 |
+
do_train: true
|
60 |
+
do_eval: true
|
61 |
+
do_predict: false
|
62 |
+
per_device_train_batch_size: 1
|
63 |
+
gradient_accumulation_steps: 8
|
64 |
+
per_device_eval_batch_size: 1
|
65 |
+
learning_rate: 2.e-5 # Will point to input encoder lr, if user_custom_optimizer is False
|
66 |
+
num_train_epochs: 10
|
67 |
+
save_steps: 5000
|
68 |
+
evaluation_strategy: steps
|
69 |
+
eval_steps: 500
|
70 |
+
fp16: true
|
71 |
+
fp16_opt_level: O1
|
72 |
+
lr_scheduler_type: "linear" # defaults to 'linear'
|
73 |
+
dataloader_num_workers: 4
|
74 |
+
label_names: [labels]
|
75 |
+
scenario: "unseen_labels"
|
76 |
+
|
77 |
+
ddp_find_unused_parameters: false
|
78 |
+
max_eval_samples: 15000
|
79 |
+
# ignore_data_skip: true
|
80 |
+
# one_hour_job: true
|
cleaned_code/configs/amzn13k_baseline_hierdescs.yml
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
EXP_NAME: "semsup_descs_100ep_newds_cosine"
|
3 |
+
EXP_DESC: "SemSup Descriptions ran for 100 epochs"
|
4 |
+
|
5 |
+
DATA:
|
6 |
+
task_name: amazon13k
|
7 |
+
dataset_name: amazon13k
|
8 |
+
dataset_config_name: null
|
9 |
+
max_seq_length: 128
|
10 |
+
overwrite_output_dir: true # Set to false, if using one_hour_job
|
11 |
+
overwrite_cache: false
|
12 |
+
pad_to_max_length: true
|
13 |
+
load_from_local: true
|
14 |
+
max_train_samples: null
|
15 |
+
max_eval_samples: null
|
16 |
+
max_predict_samples: null
|
17 |
+
train_file: datasets/Amzn13K/train_split6500_2.jsonl
|
18 |
+
validation_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
19 |
+
test_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
20 |
+
label_max_seq_length: 96
|
21 |
+
# descriptions_file: datasets/Amzn13K/amzn_curie_descsriptions.json
|
22 |
+
descriptions_file: datasets/Amzn13K/heir_withdescriptions_v3_v3_unseen.json
|
23 |
+
test_descriptions_file: datasets/Amzn13K/heir_withdescriptions_v3_v3.json
|
24 |
+
|
25 |
+
all_labels : datasets/Amzn13K/all_labels.txt
|
26 |
+
test_labels: datasets/Amzn13K/unseen_labels_split6500_2.txt
|
27 |
+
|
28 |
+
contrastive_learning_samples: 2000
|
29 |
+
cl_min_positive_descs: 1
|
30 |
+
# bm_short_file: datasets/eurlex4.3k/train_bmshort.txt
|
31 |
+
# ignore_pos_labels_file: datasets/Amzn13K/ignore_train_split6500_fs5.txt
|
32 |
+
coil_cluster_mapping_path: bert_coil_map_dict_lemma255K_isotropic.json
|
33 |
+
|
34 |
+
MODEL:
|
35 |
+
model_name_or_path: bert-base-uncased
|
36 |
+
# pretrained_model_path: output/semsup_descs_amzn13k_web_6500_small/checkpoint-20000/pytorch_model.bin
|
37 |
+
config_name: null
|
38 |
+
tokenizer_name: null
|
39 |
+
cache_dir: null
|
40 |
+
use_fast_tokenizer: true
|
41 |
+
model_revision: main
|
42 |
+
use_auth_token: false
|
43 |
+
ignore_mismatched_sizes: false
|
44 |
+
negative_sampling: "none"
|
45 |
+
semsup: true
|
46 |
+
# label_model_name_or_path: bert-base-uncased # prajjwal1/bert-small
|
47 |
+
label_model_name_or_path: prajjwal1/bert-small
|
48 |
+
encoder_model_type: bert
|
49 |
+
use_custom_optimizer: adamw
|
50 |
+
output_learning_rate: 1.e-4
|
51 |
+
arch_type : 2
|
52 |
+
add_label_name: true
|
53 |
+
normalize_embeddings: false
|
54 |
+
tie_weights: false
|
55 |
+
coil: true
|
56 |
+
colbert: false
|
57 |
+
# use_precomputed_embeddings: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_embs_bert_9_96.npy
|
58 |
+
token_dim: 16
|
59 |
+
label_frozen_layers: 2
|
60 |
+
|
61 |
+
TRAINING:
|
62 |
+
do_train: true
|
63 |
+
do_eval: true
|
64 |
+
do_predict: false
|
65 |
+
per_device_train_batch_size: 1
|
66 |
+
gradient_accumulation_steps: 8
|
67 |
+
per_device_eval_batch_size: 1
|
68 |
+
learning_rate: 5.e-5 # Will point to input encoder lr, if user_custom_optimizer is False
|
69 |
+
num_train_epochs: 3
|
70 |
+
save_steps: 4900
|
71 |
+
evaluation_strategy: steps
|
72 |
+
eval_steps: 5000
|
73 |
+
fp16: true
|
74 |
+
fp16_opt_level: O1
|
75 |
+
lr_scheduler_type: "linear" # defaults to 'linear'
|
76 |
+
dataloader_num_workers: 4
|
77 |
+
label_names: [labels]
|
78 |
+
scenario: "unseen_labels"
|
79 |
+
|
80 |
+
ddp_find_unused_parameters: false
|
81 |
+
max_eval_samples: 15000
|
82 |
+
ignore_data_skip: true
|
83 |
+
# one_hour_job: true
|
84 |
+
|
cleaned_code/configs/amzn13k_baseline_hierdescs_seen.yml
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
EXP_NAME: "semsup_descs_100ep_newds_cosine"
|
3 |
+
EXP_DESC: "SemSup Descriptions ran for 100 epochs"
|
4 |
+
|
5 |
+
DATA:
|
6 |
+
task_name: amazon13k
|
7 |
+
dataset_name: amazon13k
|
8 |
+
dataset_config_name: null
|
9 |
+
max_seq_length: 128
|
10 |
+
overwrite_output_dir: true # Set to false, if using one_hour_job
|
11 |
+
overwrite_cache: false
|
12 |
+
pad_to_max_length: true
|
13 |
+
load_from_local: true
|
14 |
+
max_train_samples: null
|
15 |
+
max_eval_samples: null
|
16 |
+
max_predict_samples: null
|
17 |
+
train_file: datasets/Amzn13K/train_split6500_2.jsonl
|
18 |
+
validation_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
19 |
+
test_file: datasets/Amzn13K/test_unseen_split6500_2.jsonl
|
20 |
+
label_max_seq_length: 96
|
21 |
+
descriptions_file: datasets/Amzn13K/heir_withdescriptions_v3_v3.json
|
22 |
+
# descriptions_file: datasets/Amzn13K/heir_withdescriptions_v3_v3_unseen.json
|
23 |
+
# test_descriptions_file: datasets/Amzn13K/heir_withdescriptions_v3_v3.json
|
24 |
+
|
25 |
+
all_labels : datasets/Amzn13K/all_labels.txt
|
26 |
+
test_labels: datasets/Amzn13K/unseen_labels_split6500_2.txt
|
27 |
+
|
28 |
+
contrastive_learning_samples: 2000
|
29 |
+
cl_min_positive_descs: 1
|
30 |
+
# bm_short_file: datasets/eurlex4.3k/train_bmshort.txt
|
31 |
+
# ignore_pos_labels_file: datasets/Amzn13K/ignore_train_split6500_fs5.txt
|
32 |
+
|
33 |
+
MODEL:
|
34 |
+
model_name_or_path: bert-base-uncased
|
35 |
+
# pretrained_model_path: output/semsup_descs_amzn13k_web_6500_small/checkpoint-20000/pytorch_model.bin
|
36 |
+
config_name: null
|
37 |
+
tokenizer_name: null
|
38 |
+
cache_dir: null
|
39 |
+
use_fast_tokenizer: true
|
40 |
+
model_revision: main
|
41 |
+
use_auth_token: false
|
42 |
+
ignore_mismatched_sizes: false
|
43 |
+
negative_sampling: "none"
|
44 |
+
semsup: true
|
45 |
+
# label_model_name_or_path: bert-base-uncased # prajjwal1/bert-small
|
46 |
+
label_model_name_or_path: prajjwal1/bert-small
|
47 |
+
encoder_model_type: bert
|
48 |
+
use_custom_optimizer: adamw
|
49 |
+
output_learning_rate: 1.e-4
|
50 |
+
arch_type : 2
|
51 |
+
add_label_name: true
|
52 |
+
normalize_embeddings: false
|
53 |
+
tie_weights: false
|
54 |
+
coil: true
|
55 |
+
colbert: false
|
56 |
+
# use_precomputed_embeddings: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_embs_bert_9_96.npy
|
57 |
+
token_dim: 16
|
58 |
+
label_frozen_layers: 2
|
59 |
+
|
60 |
+
TRAINING:
|
61 |
+
do_train: true
|
62 |
+
do_eval: true
|
63 |
+
per_device_train_batch_size: 1
|
64 |
+
gradient_accumulation_steps: 4
|
65 |
+
per_device_eval_batch_size: 1
|
66 |
+
learning_rate: 5.e-5 # Will point to input encoder lr, if user_custom_optimizer is False
|
67 |
+
num_train_epochs: 3
|
68 |
+
save_steps: 5000
|
69 |
+
evaluation_strategy: steps
|
70 |
+
eval_steps: 1000
|
71 |
+
fp16: true
|
72 |
+
fp16_opt_level: O1
|
73 |
+
lr_scheduler_type: "linear" # defaults to 'linear'
|
74 |
+
dataloader_num_workers: 4
|
75 |
+
label_names: [labels]
|
76 |
+
scenario: "unseen_labels"
|
77 |
+
|
78 |
+
ddp_find_unused_parameters: false
|
79 |
+
max_eval_samples: 15000
|
80 |
+
# ignore_data_skip: true
|
81 |
+
# one_hour_job: true
|
82 |
+
|
cleaned_code/configs/baseline.yml
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EXP_NAME: "eurlex4k_baseline_128_newds"
|
2 |
+
EXP_DESC: "Eurlex4K Baseline with len=128 on new dataset"
|
3 |
+
# Ideally would contain all the possible keys
|
4 |
+
|
5 |
+
DATA:
|
6 |
+
task_name: eurlex4k
|
7 |
+
dataset_name: eurlex
|
8 |
+
dataset_config_name: null
|
9 |
+
max_seq_length: 128
|
10 |
+
overwrite_output_dir: true
|
11 |
+
overwrite_cache: true
|
12 |
+
pad_to_max_length: true
|
13 |
+
load_from_local: true
|
14 |
+
max_train_samples: null
|
15 |
+
max_eval_samples: null
|
16 |
+
max_predict_samples: null
|
17 |
+
train_file: datasets/eurlex_raw_text_dataset/train.jsonl
|
18 |
+
validation_file: datasets/eurlex_raw_text_dataset/test.jsonl
|
19 |
+
test_file: datasets/eurlex_raw_text_dataset/test.jsonl
|
20 |
+
|
21 |
+
MODEL:
|
22 |
+
model_name_or_path: bert-base-uncased
|
23 |
+
config_name: null
|
24 |
+
tokenizer_name: null
|
25 |
+
cache_dir: null
|
26 |
+
use_fast_tokenizer: true
|
27 |
+
model_revision: main
|
28 |
+
use_auth_token: false
|
29 |
+
ignore_mismatched_sizes: false
|
30 |
+
negative_sampling: "none"
|
31 |
+
semsup: false
|
32 |
+
encoder_model_type: bert
|
33 |
+
user_custom_optimizer: null
|
34 |
+
|
35 |
+
|
36 |
+
TRAINING:
|
37 |
+
do_train: true
|
38 |
+
do_eval: true
|
39 |
+
per_device_train_batch_size: 8
|
40 |
+
gradient_accumulation_steps: 1
|
41 |
+
learning_rate: 1.e-4 # Will point to input encoder lr, if user_custom_optimizer is False
|
42 |
+
num_train_epochs: 30
|
43 |
+
save_steps: 20000
|
44 |
+
evaluation_strategy: steps
|
45 |
+
eval_steps: 10000
|
46 |
+
fp16: true
|
47 |
+
fp16_opt_level: O1
|
48 |
+
lr_scheduler_type: "constant_with_warmup" # defaults to 'linear'
|
49 |
+
dataloader_num_workers: 4
|
50 |
+
label_names: [labels]
|
51 |
+
|
52 |
+
|
cleaned_code/configs/eurlex4.3k_baseline.yml
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EXP_NAME: "semsup_descs_100ep_newds_cosine"
|
2 |
+
EXP_DESC: "SemSup Descriptions ran for 100 epochs"
|
3 |
+
|
4 |
+
DATA:
|
5 |
+
task_name: eurlex57k
|
6 |
+
dataset_name: eurlex
|
7 |
+
dataset_config_name: null
|
8 |
+
max_seq_length: 512
|
9 |
+
overwrite_output_dir: true
|
10 |
+
overwrite_cache: false
|
11 |
+
pad_to_max_length: true
|
12 |
+
load_from_local: true
|
13 |
+
max_train_samples: null
|
14 |
+
max_eval_samples: null
|
15 |
+
max_predict_samples: null
|
16 |
+
# train_file: ../training/datasets/eurlex4.3k/train_hr.jsonl
|
17 |
+
# train_file: ../training/datasets/eurlex4.3k/train.jsonl
|
18 |
+
# validation_file: ../training/datasets/eurlex4.3k/test_unseen.jsonl
|
19 |
+
# test_file: ../training/datasets/eurlex4.3k/test_unseen.jsonl
|
20 |
+
# validation_file: ../training/datasets/eurlex4.3k/test.jsonl
|
21 |
+
# test_file: ../training/datasets/eurlex4.3k/test.jsonl
|
22 |
+
train_file: ../training/datasets/eurlex4.3k/train_split1057_1000highfreq.jsonl
|
23 |
+
validation_file: ../training/datasets/eurlex4.3k/test_unseen_split1057.jsonl
|
24 |
+
test_file: ../training/datasets/eurlex4.3k/test_unseen_split1057.jsonl
|
25 |
+
|
26 |
+
# validation_file: ../training/datasets/eurlex4.3k/test_unseen_hr.jsonl
|
27 |
+
# test_file: ../training/datasets/eurlex4.3k/test_unseen_hr.jsonl
|
28 |
+
label_max_seq_length: 96
|
29 |
+
descriptions_file: ../training/datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1.json
|
30 |
+
# descriptions_file: ../training/datasets/eurlex4.3k/heir_descriptions_4.3k_v1.json
|
31 |
+
# descriptions_file: ../training/datasets/eurlex4.3k/curie_descriptions_4.3k_v1.json
|
32 |
+
all_labels : ../training/datasets/eurlex4.3k/all_labels.txt
|
33 |
+
test_labels: ../training/datasets/eurlex4.3k/unseen_labels_split1057.txt
|
34 |
+
# test_labels: ../training/datasets/eurlex4.3k/unseen_labels.txt
|
35 |
+
|
36 |
+
max_descs_per_label: 5
|
37 |
+
# contrastive_learning_samples: 1500
|
38 |
+
# cl_min_positive_descs: 1
|
39 |
+
# bm_short_file: ../training/datasets/eurlex4.3k/train_bmshort.txt
|
40 |
+
|
41 |
+
MODEL:
|
42 |
+
model_name_or_path: bert-base-uncased
|
43 |
+
config_name: null
|
44 |
+
tokenizer_name: null
|
45 |
+
cache_dir: null
|
46 |
+
use_fast_tokenizer: true
|
47 |
+
model_revision: main
|
48 |
+
use_auth_token: false
|
49 |
+
ignore_mismatched_sizes: false
|
50 |
+
negative_sampling: "none"
|
51 |
+
semsup: true
|
52 |
+
# label_model_name_or_path: prajjwal1/bert-small
|
53 |
+
label_model_name_or_path: bert-base-uncased
|
54 |
+
# label_model_name_or_path: prajjwal1/bert-tiny
|
55 |
+
encoder_model_type: bert
|
56 |
+
use_custom_optimizer: adamw
|
57 |
+
output_learning_rate: 1.e-4
|
58 |
+
arch_type : 2
|
59 |
+
add_label_name: false
|
60 |
+
normalize_embeddings: false
|
61 |
+
tie_weights: true
|
62 |
+
coil: true
|
63 |
+
# use_precomputed_embeddings: ../training/datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_embs_bert_9_96.npy
|
64 |
+
token_dim: 16
|
65 |
+
num_frozen_layers: 9
|
66 |
+
|
67 |
+
TRAINING:
|
68 |
+
do_train: true
|
69 |
+
do_eval: true
|
70 |
+
per_device_train_batch_size: 1
|
71 |
+
gradient_accumulation_steps: 4
|
72 |
+
per_device_eval_batch_size: 1
|
73 |
+
learning_rate: 5.e-5 # Will point to input encoder lr, if user_custom_optimizer is False
|
74 |
+
num_train_epochs: 10
|
75 |
+
save_steps: 10000
|
76 |
+
evaluation_strategy: steps
|
77 |
+
eval_steps: 500
|
78 |
+
fp16: true
|
79 |
+
fp16_opt_level: O1
|
80 |
+
lr_scheduler_type: "linear" # defaults to 'linear'
|
81 |
+
dataloader_num_workers: 8
|
82 |
+
label_names: [labels]
|
83 |
+
scenario: "unseen_labels"
|
84 |
+
|
85 |
+
ddp_find_unused_parameters: false
|
86 |
+
|
87 |
+
|
cleaned_code/configs/eurlex4.3k_baseline2.yml
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EXP_NAME: "semsup_descs_100ep_newds_cosine"
|
2 |
+
EXP_DESC: "SemSup Descriptions ran for 100 epochs"
|
3 |
+
|
4 |
+
DATA:
|
5 |
+
task_name: eurlex57k
|
6 |
+
dataset_name: eurlex
|
7 |
+
dataset_config_name: null
|
8 |
+
max_seq_length: 512
|
9 |
+
overwrite_output_dir: true
|
10 |
+
overwrite_cache: false
|
11 |
+
pad_to_max_length: true
|
12 |
+
load_from_local: true
|
13 |
+
max_train_samples: null
|
14 |
+
max_eval_samples: null
|
15 |
+
max_predict_samples: null
|
16 |
+
# train_file: datasets/eurlex4.3k/train_hr.jsonl
|
17 |
+
# train_file: datasets/eurlex4.3k/train.jsonl
|
18 |
+
# validation_file: datasets/eurlex4.3k/test_unseen.jsonl
|
19 |
+
# test_file: datasets/eurlex4.3k/test_unseen.jsonl
|
20 |
+
# validation_file: datasets/eurlex4.3k/test.jsonl
|
21 |
+
# test_file: datasets/eurlex4.3k/test.jsonl
|
22 |
+
train_file: datasets/eurlex4.3k/train_split248_root.jsonl
|
23 |
+
validation_file: datasets/eurlex4.3k/test_unseen_split248_root.jsonl
|
24 |
+
test_file: datasets/eurlex4.3k/test_unseen_split248_root.jsonl
|
25 |
+
|
26 |
+
# validation_file: datasets/eurlex4.3k/test_unseen_hr.jsonl
|
27 |
+
# test_file: datasets/eurlex4.3k/test_unseen_hr.jsonl
|
28 |
+
label_max_seq_length: 96
|
29 |
+
descriptions_file: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1.json
|
30 |
+
# descriptions_file: datasets/eurlex4.3k/curie_descriptions_4.3k_v1.json
|
31 |
+
all_labels : datasets/eurlex4.3k/all_labels.txt
|
32 |
+
test_labels: datasets/eurlex4.3k/unseen_labels_split248_root.txt
|
33 |
+
# test_labels: datasets/eurlex4.3k/unseen_labels.txt
|
34 |
+
|
35 |
+
max_descs_per_label: 5
|
36 |
+
contrastive_learning_samples: 2500
|
37 |
+
cl_min_positive_descs: 1
|
38 |
+
bm_short_file: datasets/eurlex4.3k/train_bmshort.txt
|
39 |
+
|
40 |
+
MODEL:
|
41 |
+
model_name_or_path: bert-base-uncased
|
42 |
+
config_name: null
|
43 |
+
tokenizer_name: null
|
44 |
+
cache_dir: null
|
45 |
+
use_fast_tokenizer: true
|
46 |
+
model_revision: main
|
47 |
+
use_auth_token: false
|
48 |
+
ignore_mismatched_sizes: false
|
49 |
+
negative_sampling: "none"
|
50 |
+
semsup: true
|
51 |
+
# label_model_name_or_path: bert-base-uncased # prajjwal1/bert-small
|
52 |
+
label_model_name_or_path: prajjwal1/bert-tiny
|
53 |
+
encoder_model_type: bert
|
54 |
+
use_custom_optimizer: adamw
|
55 |
+
output_learning_rate: 1.e-4
|
56 |
+
arch_type : 2
|
57 |
+
add_label_name: false
|
58 |
+
normalize_embeddings: false
|
59 |
+
tie_weights: false
|
60 |
+
coil: true
|
61 |
+
# use_precomputed_embeddings: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_embs_bert_9_96.npy
|
62 |
+
token_dim: 16
|
63 |
+
|
64 |
+
TRAINING:
|
65 |
+
do_train: true
|
66 |
+
do_eval: true
|
67 |
+
per_device_train_batch_size: 1
|
68 |
+
gradient_accumulation_steps: 8
|
69 |
+
per_device_eval_batch_size: 2
|
70 |
+
learning_rate: 5.e-5 # Will point to input encoder lr, if user_custom_optimizer is False
|
71 |
+
num_train_epochs: 10
|
72 |
+
save_steps: 10000
|
73 |
+
evaluation_strategy: steps
|
74 |
+
eval_steps: 500
|
75 |
+
fp16: true
|
76 |
+
fp16_opt_level: O1
|
77 |
+
lr_scheduler_type: "linear" # defaults to 'linear'
|
78 |
+
dataloader_num_workers: 8
|
79 |
+
label_names: [labels]
|
80 |
+
scenario: "unseen_labels"
|
81 |
+
|
82 |
+
ddp_find_unused_parameters: false
|
83 |
+
|
84 |
+
|
cleaned_code/configs/eurlex4.3k_baseline_fs.yml
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EXP_NAME: "semsup_descs_100ep_newds_cosine"
|
2 |
+
EXP_DESC: "SemSup Descriptions ran for 100 epochs"
|
3 |
+
|
4 |
+
DATA:
|
5 |
+
task_name: eurlex57k
|
6 |
+
dataset_name: eurlex
|
7 |
+
dataset_config_name: null
|
8 |
+
max_seq_length: 512
|
9 |
+
overwrite_output_dir: true
|
10 |
+
overwrite_cache: false
|
11 |
+
pad_to_max_length: true
|
12 |
+
load_from_local: true
|
13 |
+
max_train_samples: null
|
14 |
+
max_eval_samples: null
|
15 |
+
max_predict_samples: null
|
16 |
+
# train_file: datasets/eurlex4.3k/train_hr.jsonl
|
17 |
+
# train_file: datasets/eurlex4.3k/train.jsonl
|
18 |
+
# validation_file: datasets/eurlex4.3k/test_unseen.jsonl
|
19 |
+
# test_file: datasets/eurlex4.3k/test_unseen.jsonl
|
20 |
+
# validation_file: datasets/eurlex4.3k/test.jsonl
|
21 |
+
# test_file: datasets/eurlex4.3k/test.jsonl
|
22 |
+
train_file: datasets/eurlex4.3k/train_split1057_fs1.jsonl
|
23 |
+
validation_file: datasets/eurlex4.3k/test_unseen_split1057_fs1.jsonl
|
24 |
+
test_file: datasets/eurlex4.3k/test_unseen_split1057_fs1.jsonl
|
25 |
+
|
26 |
+
# validation_file: datasets/eurlex4.3k/test_unseen_hr.jsonl
|
27 |
+
# test_file: datasets/eurlex4.3k/test_unseen_hr.jsonl
|
28 |
+
label_max_seq_length: 80
|
29 |
+
# descriptions_file: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1.json
|
30 |
+
descriptions_file: datasets/eurlex4.3k/heir_descriptions_4.3k_v1.json
|
31 |
+
# descriptions_file: datasets/eurlex4.3k/curie_descriptions_4.3k_v1.json
|
32 |
+
all_labels : datasets/eurlex4.3k/all_labels.txt
|
33 |
+
test_labels: datasets/eurlex4.3k/unseen_labels_split1057_fs1.txt
|
34 |
+
# test_labels: datasets/eurlex4.3k/unseen_labels.txt
|
35 |
+
ignore_pos_labels_file: datasets/eurlex4.3k/ignore_train_split1057_fs1.txt
|
36 |
+
|
37 |
+
max_descs_per_label: 5
|
38 |
+
contrastive_learning_samples: 600
|
39 |
+
cl_min_positive_descs: 2
|
40 |
+
# bm_short_file: datasets/eurlex4.3k/train_bmshort.txt
|
41 |
+
|
42 |
+
MODEL:
|
43 |
+
model_name_or_path: bert-base-uncased
|
44 |
+
pretrained_model_path: output/semsup_descs_100ep_4.3k_unseen_coilsmall_hier/checkpoint-20000/pytorch_model.bin
|
45 |
+
config_name: null
|
46 |
+
tokenizer_name: null
|
47 |
+
cache_dir: null
|
48 |
+
use_fast_tokenizer: true
|
49 |
+
model_revision: main
|
50 |
+
use_auth_token: false
|
51 |
+
ignore_mismatched_sizes: false
|
52 |
+
negative_sampling: "none"
|
53 |
+
semsup: true
|
54 |
+
label_model_name_or_path: prajjwal1/bert-small
|
55 |
+
# label_model_name_or_path: prajjwal1/bert-tiny
|
56 |
+
encoder_model_type: bert
|
57 |
+
use_custom_optimizer: adamw
|
58 |
+
output_learning_rate: 1.e-4
|
59 |
+
arch_type : 2
|
60 |
+
add_label_name: false
|
61 |
+
normalize_embeddings: false
|
62 |
+
tie_weights: false
|
63 |
+
coil: true
|
64 |
+
# use_precomputed_embeddings: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_embs_bert_9_96.npy
|
65 |
+
token_dim: 16
|
66 |
+
label_frozen_layers: 2
|
67 |
+
|
68 |
+
TRAINING:
|
69 |
+
do_train: true
|
70 |
+
do_eval: true
|
71 |
+
per_device_train_batch_size: 1
|
72 |
+
gradient_accumulation_steps: 4
|
73 |
+
per_device_eval_batch_size: 1
|
74 |
+
learning_rate: 5.e-5 # Will point to input encoder lr, if user_custom_optimizer is False
|
75 |
+
num_train_epochs: 100
|
76 |
+
save_steps: 10000
|
77 |
+
evaluation_strategy: steps
|
78 |
+
eval_steps: 100
|
79 |
+
fp16: true
|
80 |
+
fp16_opt_level: O1
|
81 |
+
lr_scheduler_type: "linear" # defaults to 'linear'
|
82 |
+
dataloader_num_workers: 1
|
83 |
+
label_names: [labels]
|
84 |
+
scenario: "unseen_labels"
|
85 |
+
|
86 |
+
ddp_find_unused_parameters: false
|
87 |
+
# ignore_data_skip: true
|
88 |
+
# one_hour_job: true
|
89 |
+
|
90 |
+
|
cleaned_code/configs/eurlex4.3k_baseline_fs20.yml
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EXP_NAME: "semsup_descs_100ep_newds_cosine"
|
2 |
+
EXP_DESC: "SemSup Descriptions ran for 100 epochs"
|
3 |
+
|
4 |
+
DATA:
|
5 |
+
task_name: eurlex57k
|
6 |
+
dataset_name: eurlex
|
7 |
+
dataset_config_name: null
|
8 |
+
max_seq_length: 512
|
9 |
+
overwrite_output_dir: true
|
10 |
+
overwrite_cache: false
|
11 |
+
pad_to_max_length: true
|
12 |
+
load_from_local: true
|
13 |
+
max_train_samples: null
|
14 |
+
max_eval_samples: null
|
15 |
+
max_predict_samples: null
|
16 |
+
# train_file: datasets/eurlex4.3k/train_hr.jsonl
|
17 |
+
# train_file: datasets/eurlex4.3k/train.jsonl
|
18 |
+
# validation_file: datasets/eurlex4.3k/test_unseen.jsonl
|
19 |
+
# test_file: datasets/eurlex4.3k/test_unseen.jsonl
|
20 |
+
# validation_file: datasets/eurlex4.3k/test.jsonl
|
21 |
+
# test_file: datasets/eurlex4.3k/test.jsonl
|
22 |
+
train_file: datasets/eurlex4.3k/train_split1057_fs20.jsonl
|
23 |
+
validation_file: datasets/eurlex4.3k/test_unseen_split1057_fs20.jsonl
|
24 |
+
test_file: datasets/eurlex4.3k/test_unseen_split1057_fs20.jsonl
|
25 |
+
|
26 |
+
# validation_file: datasets/eurlex4.3k/test_unseen_hr.jsonl
|
27 |
+
# test_file: datasets/eurlex4.3k/test_unseen_hr.jsonl
|
28 |
+
label_max_seq_length: 80
|
29 |
+
# descriptions_file: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1.json
|
30 |
+
descriptions_file: datasets/eurlex4.3k/heir_descriptions_4.3k_v1.json
|
31 |
+
# descriptions_file: datasets/eurlex4.3k/curie_descriptions_4.3k_v1.json
|
32 |
+
all_labels : datasets/eurlex4.3k/all_labels.txt
|
33 |
+
test_labels: datasets/eurlex4.3k/unseen_labels_split1057_fs20.txt
|
34 |
+
# test_labels: datasets/eurlex4.3k/unseen_labels.txt
|
35 |
+
ignore_pos_labels_file: datasets/eurlex4.3k/ignore_train_split1057_fs20.txt
|
36 |
+
|
37 |
+
max_descs_per_label: 5
|
38 |
+
contrastive_learning_samples: 600
|
39 |
+
cl_min_positive_descs: 2
|
40 |
+
# bm_short_file: datasets/eurlex4.3k/train_bmshort.txt
|
41 |
+
|
42 |
+
MODEL:
|
43 |
+
model_name_or_path: bert-base-uncased
|
44 |
+
pretrained_model_path: output/semsup_descs_100ep_4.3k_unseen_coilsmall_hier/checkpoint-20000/pytorch_model.bin
|
45 |
+
config_name: null
|
46 |
+
tokenizer_name: null
|
47 |
+
cache_dir: null
|
48 |
+
use_fast_tokenizer: true
|
49 |
+
model_revision: main
|
50 |
+
use_auth_token: false
|
51 |
+
ignore_mismatched_sizes: false
|
52 |
+
negative_sampling: "none"
|
53 |
+
semsup: true
|
54 |
+
label_model_name_or_path: prajjwal1/bert-small
|
55 |
+
# label_model_name_or_path: prajjwal1/bert-tiny
|
56 |
+
encoder_model_type: bert
|
57 |
+
use_custom_optimizer: adamw
|
58 |
+
output_learning_rate: 1.e-4
|
59 |
+
arch_type : 2
|
60 |
+
add_label_name: false
|
61 |
+
normalize_embeddings: false
|
62 |
+
tie_weights: false
|
63 |
+
coil: true
|
64 |
+
# use_precomputed_embeddings: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_embs_bert_9_96.npy
|
65 |
+
token_dim: 16
|
66 |
+
label_frozen_layers: 2
|
67 |
+
|
68 |
+
TRAINING:
|
69 |
+
do_train: true
|
70 |
+
do_eval: true
|
71 |
+
per_device_train_batch_size: 1
|
72 |
+
gradient_accumulation_steps: 4
|
73 |
+
per_device_eval_batch_size: 1
|
74 |
+
learning_rate: 5.e-5 # Will point to input encoder lr, if user_custom_optimizer is False
|
75 |
+
num_train_epochs: 20
|
76 |
+
save_steps: 10000
|
77 |
+
evaluation_strategy: steps
|
78 |
+
eval_steps: 500
|
79 |
+
fp16: true
|
80 |
+
fp16_opt_level: O1
|
81 |
+
lr_scheduler_type: "linear" # defaults to 'linear'
|
82 |
+
dataloader_num_workers: 1
|
83 |
+
label_names: [labels]
|
84 |
+
scenario: "unseen_labels"
|
85 |
+
|
86 |
+
ddp_find_unused_parameters: false
|
87 |
+
# ignore_data_skip: true
|
88 |
+
# one_hour_job: true
|
89 |
+
|
90 |
+
|
cleaned_code/configs/eurlex4.3k_baseline_fs5.yml
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EXP_NAME: "semsup_descs_100ep_newds_cosine"
|
2 |
+
EXP_DESC: "SemSup Descriptions ran for 100 epochs"
|
3 |
+
|
4 |
+
DATA:
|
5 |
+
task_name: eurlex57k
|
6 |
+
dataset_name: eurlex
|
7 |
+
dataset_config_name: null
|
8 |
+
max_seq_length: 512
|
9 |
+
overwrite_output_dir: true
|
10 |
+
overwrite_cache: false
|
11 |
+
pad_to_max_length: true
|
12 |
+
load_from_local: true
|
13 |
+
max_train_samples: null
|
14 |
+
max_eval_samples: null
|
15 |
+
max_predict_samples: null
|
16 |
+
train_file: datasets/eurlex4.3k/train_split1057_fs5.jsonl
|
17 |
+
validation_file: datasets/eurlex4.3k/test_unseen_split1057_fs5.jsonl
|
18 |
+
test_file: datasets/eurlex4.3k/test_unseen_split1057_fs5.jsonl
|
19 |
+
|
20 |
+
label_max_seq_length: 80
|
21 |
+
descriptions_file: datasets/eurlex4.3k/heir_descriptions_4.3k_v1.json
|
22 |
+
all_labels : datasets/eurlex4.3k/all_labels.txt
|
23 |
+
test_labels: datasets/eurlex4.3k/unseen_labels_split1057_fs5.txt
|
24 |
+
ignore_pos_labels_file: datasets/eurlex4.3k/ignore_train_split1057_fs5.txt
|
25 |
+
|
26 |
+
max_descs_per_label: 5
|
27 |
+
contrastive_learning_samples: 600
|
28 |
+
cl_min_positive_descs: 2
|
29 |
+
|
30 |
+
MODEL:
|
31 |
+
model_name_or_path: bert-base-uncased
|
32 |
+
pretrained_model_path: output/semsup_descs_100ep_4.3k_unseen_coilsmall_hier/checkpoint-20000/pytorch_model.bin
|
33 |
+
config_name: null
|
34 |
+
tokenizer_name: null
|
35 |
+
cache_dir: null
|
36 |
+
use_fast_tokenizer: true
|
37 |
+
model_revision: main
|
38 |
+
use_auth_token: false
|
39 |
+
ignore_mismatched_sizes: false
|
40 |
+
negative_sampling: "none"
|
41 |
+
semsup: true
|
42 |
+
label_model_name_or_path: prajjwal1/bert-small
|
43 |
+
# label_model_name_or_path: prajjwal1/bert-tiny
|
44 |
+
encoder_model_type: bert
|
45 |
+
use_custom_optimizer: adamw
|
46 |
+
output_learning_rate: 1.e-4
|
47 |
+
arch_type : 2
|
48 |
+
add_label_name: false
|
49 |
+
normalize_embeddings: false
|
50 |
+
tie_weights: false
|
51 |
+
coil: true
|
52 |
+
# use_precomputed_embeddings: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_embs_bert_9_96.npy
|
53 |
+
token_dim: 16
|
54 |
+
label_frozen_layers: 2
|
55 |
+
|
56 |
+
TRAINING:
|
57 |
+
do_train: true
|
58 |
+
do_eval: true
|
59 |
+
per_device_train_batch_size: 1
|
60 |
+
gradient_accumulation_steps: 4
|
61 |
+
per_device_eval_batch_size: 1
|
62 |
+
learning_rate: 5.e-5 # Will point to input encoder lr, if user_custom_optimizer is False
|
63 |
+
num_train_epochs: 20
|
64 |
+
save_steps: 10000
|
65 |
+
evaluation_strategy: steps
|
66 |
+
eval_steps: 500
|
67 |
+
fp16: true
|
68 |
+
fp16_opt_level: O1
|
69 |
+
lr_scheduler_type: "linear" # defaults to 'linear'
|
70 |
+
dataloader_num_workers: 1
|
71 |
+
label_names: [labels]
|
72 |
+
scenario: "unseen_labels"
|
73 |
+
|
74 |
+
ddp_find_unused_parameters: false
|
75 |
+
# ignore_data_skip: true
|
76 |
+
# one_hour_job: true
|
77 |
+
|
78 |
+
|
cleaned_code/configs/eurlex4.3k_baseline_nl.yml
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EXP_NAME: "semsup_descs_100ep_newds_cosine"
|
2 |
+
EXP_DESC: "SemSup Descriptions ran for 100 epochs"
|
3 |
+
|
4 |
+
DATA:
|
5 |
+
task_name: eurlex57k
|
6 |
+
dataset_name: eurlex
|
7 |
+
dataset_config_name: null
|
8 |
+
max_seq_length: 512
|
9 |
+
overwrite_output_dir: true
|
10 |
+
overwrite_cache: false
|
11 |
+
pad_to_max_length: true
|
12 |
+
load_from_local: true
|
13 |
+
max_train_samples: null
|
14 |
+
max_eval_samples: null
|
15 |
+
max_predict_samples: null
|
16 |
+
# train_file: datasets/eurlex4.3k/train_hr.jsonl
|
17 |
+
# train_file: datasets/eurlex4.3k/train.jsonl
|
18 |
+
# validation_file: datasets/eurlex4.3k/test_unseen.jsonl
|
19 |
+
# test_file: datasets/eurlex4.3k/test_unseen.jsonl
|
20 |
+
# validation_file: datasets/eurlex4.3k/test.jsonl
|
21 |
+
# test_file: datasets/eurlex4.3k/test.jsonl
|
22 |
+
train_file: datasets/eurlex4.3k/train_split1057.jsonl
|
23 |
+
validation_file: datasets/eurlex4.3k/test_unseen_split1057.jsonl
|
24 |
+
test_file: datasets/eurlex4.3k/test_unseen_split1057.jsonl
|
25 |
+
|
26 |
+
# validation_file: datasets/eurlex4.3k/test_unseen_hr.jsonl
|
27 |
+
# test_file: datasets/eurlex4.3k/test_unseen_hr.jsonl
|
28 |
+
label_max_seq_length: 96
|
29 |
+
descriptions_file: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_nl.json
|
30 |
+
# descriptions_file: datasets/eurlex4.3k/heir_descriptions_4.3k_v1.json
|
31 |
+
# descriptions_file: datasets/eurlex4.3k/curie_descriptions_4.3k_v1.json
|
32 |
+
all_labels : datasets/eurlex4.3k/all_labels.txt
|
33 |
+
test_labels: datasets/eurlex4.3k/unseen_labels_split1057.txt
|
34 |
+
# test_labels: datasets/eurlex4.3k/unseen_labels.txt
|
35 |
+
|
36 |
+
max_descs_per_label: 5
|
37 |
+
# contrastive_learning_samples: 1500
|
38 |
+
# cl_min_positive_descs: 1
|
39 |
+
# bm_short_file: datasets/eurlex4.3k/train_bmshort.txt
|
40 |
+
|
41 |
+
MODEL:
|
42 |
+
model_name_or_path: bert-base-uncased
|
43 |
+
config_name: null
|
44 |
+
tokenizer_name: null
|
45 |
+
cache_dir: null
|
46 |
+
use_fast_tokenizer: true
|
47 |
+
model_revision: main
|
48 |
+
use_auth_token: false
|
49 |
+
ignore_mismatched_sizes: false
|
50 |
+
negative_sampling: "none"
|
51 |
+
semsup: true
|
52 |
+
label_model_name_or_path: prajjwal1/bert-small
|
53 |
+
# label_model_name_or_path: bert-base-uncased
|
54 |
+
# label_model_name_or_path: prajjwal1/bert-tiny
|
55 |
+
encoder_model_type: bert
|
56 |
+
use_custom_optimizer: adamw
|
57 |
+
output_learning_rate: 1.e-4
|
58 |
+
arch_type : 2
|
59 |
+
add_label_name: false
|
60 |
+
normalize_embeddings: false
|
61 |
+
tie_weights: false
|
62 |
+
coil: true
|
63 |
+
# use_precomputed_embeddings: datasets/eurlex4.3k/heir_withdescriptions_4.3k_v1_embs_bert_9_96.npy
|
64 |
+
token_dim: 16
|
65 |
+
# num_frozen_layers: 9
|
66 |
+
label_frozen_layers: 2
|
67 |
+
|
68 |
+
TRAINING:
|
69 |
+
do_train: true
|
70 |
+
do_eval: true
|
71 |
+
per_device_train_batch_size: 1
|
72 |
+
gradient_accumulation_steps: 4
|
73 |
+
per_device_eval_batch_size: 1
|
74 |
+
learning_rate: 5.e-5 # Will point to input encoder lr, if user_custom_optimizer is False
|
75 |
+
num_train_epochs: 10
|
76 |
+
save_steps: 10000
|
77 |
+
evaluation_strategy: steps
|
78 |
+
eval_steps: 500
|
79 |
+
fp16: true
|
80 |
+
fp16_opt_level: O1
|
81 |
+
lr_scheduler_type: "linear" # defaults to 'linear'
|
82 |
+
dataloader_num_workers: 8
|
83 |
+
label_names: [labels]
|
84 |
+
scenario: "unseen_labels"
|
85 |
+
|
86 |
+
ddp_find_unused_parameters: false
|
87 |
+
|
88 |
+
|