File size: 7,592 Bytes
ec5288c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c1bfe9
ec5288c
 
 
 
 
 
 
 
 
 
 
 
5c1bfe9
c7d4293
 
 
 
 
 
 
 
 
 
 
 
 
 
ec5288c
 
c7d4293
ec5288c
d31e5a2
ec5288c
5c1bfe9
ec5288c
 
 
5c1bfe9
ec5288c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import torch
import torch.nn as nn
from torch.nn import functional as F
import numpy as np
import random
import re
import gradio as gr

# hyperparameters
batch_size = 16 # how many independent sequences will we process in parallel?
block_size = 32 # what is the maximum context length for predictions?
max_iters = 5000
eval_interval = 100
learning_rate = 1e-3
device = 'cuda' if torch.cuda.is_available() else 'cpu'
eval_iters = 200
n_embd = 64
n_head = 4
n_layer = 4
dropout = 0.0
# ------------

torch.manual_seed(1337)

class Head(nn.Module):
    """ one head of self-attention """

    def __init__(self, head_size):
        super().__init__()
        self.key = nn.Linear(n_embd, head_size, bias=False)
        self.query = nn.Linear(n_embd, head_size, bias=False)
        self.value = nn.Linear(n_embd, head_size, bias=False)
        self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))

        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        B,T,C = x.shape
        k = self.key(x)   # (B,T,C)
        q = self.query(x) # (B,T,C)
        # compute attention scores ("affinities")
        wei = q @ k.transpose(-2,-1) * C**-0.5 # (B, T, C) @ (B, C, T) -> (B, T, T)
        wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T)
        wei = F.softmax(wei, dim=-1) # (B, T, T)
        wei = self.dropout(wei)
        # perform the weighted aggregation of the values
        v = self.value(x) # (B,T,C)
        out = wei @ v # (B, T, T) @ (B, T, C) -> (B, T, C)
        return out

class MultiHeadAttention(nn.Module):
    """ multiple heads of self-attention in parallel """

    def __init__(self, num_heads, head_size):
        super().__init__()
        self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
        self.proj = nn.Linear(n_embd, n_embd)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        out = torch.cat([h(x) for h in self.heads], dim=-1)
        out = self.dropout(self.proj(out))
        return out

class FeedFoward(nn.Module):
    """ a simple linear layer followed by a non-linearity """

    def __init__(self, n_embd):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(n_embd, 4 * n_embd),
            nn.ReLU(),
            nn.Linear(4 * n_embd, n_embd),
            nn.Dropout(dropout),
        )

    def forward(self, x):
        return self.net(x)

class Block(nn.Module):
    """ Transformer block: communication followed by computation """

    def __init__(self, n_embd, n_head):
        # n_embd: embedding dimension, n_head: the number of heads we'd like
        super().__init__()
        head_size = n_embd // n_head
        self.sa = MultiHeadAttention(n_head, head_size)
        self.ffwd = FeedFoward(n_embd)
        self.ln1 = nn.LayerNorm(n_embd)
        self.ln2 = nn.LayerNorm(n_embd)

    def forward(self, x):
        x = x + self.sa(self.ln1(x))
        x = x + self.ffwd(self.ln2(x))
        return x

# super simple bigram model
class BigramLanguageModel(nn.Module):
    def __init__(self, dataset_text, n_embd):
        super().__init__()

        # Compute character-related parameters
        self.chars = sorted(list(set(dataset_text)))
        self.vocab_size = len(self.chars)
        self.stoi = {ch: i for i, ch in enumerate(self.chars)}
        self.itos = {i: ch for ch, i in self.stoi.items()}

        self.token_embedding_table = nn.Embedding(self.vocab_size, n_embd)
        self.position_embedding_table = nn.Embedding(block_size, n_embd)
        self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)])
        self.ln_f = nn.LayerNorm(n_embd)
        self.lm_head = nn.Linear(n_embd, self.vocab_size)
        self.encode = lambda s: [self.stoi[c] for c in s] # encoder: take a string, output a list of integers
        self.decode = lambda l: ''.join([self.itos[i] for i in l]) # decoder: take a list of integers, output a string

        
    def forward(self, idx, targets=None):
        B, T = idx.shape

        # idx and targets are both (B,T) tensor of integers
        tok_emb = self.token_embedding_table(idx) # (B,T,C)
        pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T,C)
        x = tok_emb + pos_emb # (B,T,C)
        x = self.blocks(x) # (B,T,C)
        x = self.ln_f(x) # (B,T,C)
        logits = self.lm_head(x) # (B,T,vocab_size)

        if targets is None:
            loss = None
        else:
            B, T, C = logits.shape
            logits = logits.view(B*T, C)
            targets = targets.view(B*T)
            loss = F.cross_entropy(logits, targets)

        return logits, loss

    def generate(self, idx, max_new_tokens):
        # idx is (B, T) array of indices in the current context
        for _ in range(max_new_tokens):
            # crop idx to the last block_size tokens
            idx_cond = idx[:, -block_size:]
            # get the predictions
            logits, loss = self(idx_cond)
            # focus only on the last time step
            logits = logits[:, -1, :] # becomes (B, C)
            # apply softmax to get probabilities
            probs = F.softmax(logits, dim=-1) # (B, C)
            # sample from the distribution
            idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
            # append sampled index to the running sequence
            idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
        return idx

# Reading shakespeare data
with open('input.txt', 'r', encoding='utf-8') as f:
    shakespeare_text = f.read()


# Load the shakespeaere model
shakespeare_model = BigramLanguageModel(shakespeare_text, n_embd).to(device)  # Initialize an instance of your model
shakespeare_model.load_state_dict(torch.load('GPT_Shakespeare_language_model.pth', map_location=torch.device('cpu')))
shakespeare_model.eval()  # Set the model to evaluation mode


def generate_shakespeare_outputs(prompt=None, max_new_tokens=2000):
  if prompt:
    context = torch.tensor(shakespeare_model.encode(prompt), dtype=torch.long, device=device).view(1, -1)
  else:
    context = torch.zeros((1, 1), dtype=torch.long, device=device)
  text_output = shakespeare_model.decode(shakespeare_model.generate(context, max_new_tokens=max_new_tokens)[0].tolist())
  return text_output



icon_html = '<i class="fas fa-chart-bar"></i>'
title = f"""
<div style="background-color: #f5f1f2; padding: 10px; display: flex; align-items: center;">
    {icon_html} <span style="margin-left: 10px;">Nano GPT</span>
</div>
"""
description = f"""
<div style="background-color: #f1f1f5; padding: 10px; display: flex; align-items: center;">
    {icon_html}
    <span style="margin-left: 10px;">
        <p><strong>Nano GPT trained on <a href='https://www.kaggle.com/datasets/mikeortman/wikipedia-sentences'>Shakespeare dataset</a>. It is trained on a very small amount of data to understand how GPT's are trained and built. The implementation can be found <a href='https://github.com/karpathy/nanoGPT'>here.</a>"</strong></p>
    </span>
</div>
"""

shakespeare_interface = gr.Interface(generate_shakespeare_outputs,
                    inputs=[gr.Textbox(label="Enter any prompt ", type="text", value="Romeo"),
                            gr.Slider(minimum=100, maximum=5000, step=100, value=2000, label="Max new tokens")],
                    outputs=gr.Textbox(label="Output generated", type="text"), description=description)

demo = gr.TabbedInterface([shakespeare_interface], tab_names=["Shakespeare Data"], 
                          title=title)



demo.launch()