Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import Blip2ForConditionalGeneration, AutoProcessor, BitsAndBytesConfig
|
4 |
+
from peft import PeftModel, PeftConfig
|
5 |
+
|
6 |
+
# Load the PEFT model configuration and quantization settings
|
7 |
+
peft_model_id = "Prasi21/blip2-opt-2.7b-strep-throat-caption-adapters3"
|
8 |
+
config = PeftConfig.from_pretrained(peft_model_id)
|
9 |
+
config.base_model_name_or_path = "Prasi21/blip2-opt-2.7b-strep-throat-caption-adapters3"
|
10 |
+
|
11 |
+
# Enable 8-bit quantization for more efficient loading
|
12 |
+
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
13 |
+
|
14 |
+
# Load the base model with quantization
|
15 |
+
model = Blip2ForConditionalGeneration.from_pretrained(
|
16 |
+
config.base_model_name_or_path,
|
17 |
+
quantization_config=quantization_config,
|
18 |
+
device_map="auto"
|
19 |
+
)
|
20 |
+
|
21 |
+
# Load the fine-tuned PEFT model
|
22 |
+
model = PeftModel.from_pretrained(model, peft_model_id)
|
23 |
+
|
24 |
+
# Load the processor
|
25 |
+
processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
26 |
+
|
27 |
+
# Define the prediction function
|
28 |
+
def predict(image):
|
29 |
+
# Preprocess the image
|
30 |
+
inputs = processor(images=image, return_tensors="pt").to(device, torch.float16)
|
31 |
+
new_eos_token_id = 13
|
32 |
+
with torch.no_grad():
|
33 |
+
generated_ids = modelA.generate(**inputs, max_length=100,
|
34 |
+
eos_token_id=new_eos_token_id)
|
35 |
+
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
36 |
+
return f"{generated_caption[0]}"
|
37 |
+
|
38 |
+
# Set up the Gradio interface
|
39 |
+
demo = gr.Interface(
|
40 |
+
fn=predict,
|
41 |
+
inputs=gr.inputs.Image(type="pil"), # Upload an image in PIL format
|
42 |
+
outputs="text", # The output will be the generated caption
|
43 |
+
title="Strep Throat Image Assessment",
|
44 |
+
description="Upload an image of a throat and receive a medical assessment caption based on the model's output."
|
45 |
+
)
|
46 |
+
|
47 |
+
# Launch the Gradio app
|
48 |
+
demo.launch()
|