LLM_with_docker / app.py
Prathamesh1420's picture
Update app.py
22e8ddc verified
import os
import gradio as gr
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
from llama_index.embeddings.mixedbreadai import MixedbreadAIEmbedding
from llama_index.llms.groq import Groq
from llama_parse import LlamaParse
# API keys
llama_cloud_key = os.environ.get("LLAMA_CLOUD_API_KEY")
groq_key = os.environ.get("GROQ_API_KEY")
mxbai_key = os.environ.get("MXBAI_API_KEY")
if not (llama_cloud_key and groq_key and mxbai_key):
raise ValueError(
"API Keys not found! Ensure they are passed to the Docker container."
)
# models name
llm_model_name = "llama-3.1-70b-versatile"
embed_model_name = "mixedbread-ai/mxbai-embed-large-v1"
# Initialize the parser
parser = LlamaParse(api_key=llama_cloud_key, result_type="markdown")
# Define file extractor with various common extensions
file_extractor = {
".pdf": parser,
".docx": parser,
".doc": parser,
".txt": parser,
".csv": parser,
".xlsx": parser,
".pptx": parser,
".html": parser,
".jpg": parser,
".jpeg": parser,
".png": parser,
".webp": parser,
".svg": parser,
}
# Initialize the embedding model
embed_model = MixedbreadAIEmbedding(api_key=mxbai_key, model_name=embed_model_name)
# Initialize the LLM
llm = Groq(model="llama-3.1-70b-versatile", api_key=groq_key)
# File processing function
def load_files(file_path: str):
global vector_index
if not file_path:
return "No file path provided. Please upload a file."
valid_extensions = ', '.join(file_extractor.keys())
if not any(file_path.endswith(ext) for ext in file_extractor):
return f"The parser can only parse the following file types: {valid_extensions}"
document = SimpleDirectoryReader(input_files=[file_path], file_extractor=file_extractor).load_data()
vector_index = VectorStoreIndex.from_documents(document, embed_model=embed_model)
print(f"Parsing completed for: {file_path}")
filename = os.path.basename(file_path)
return f"Ready to provide responses based on: {filename}"
# Respond function
def respond(message, history):
try:
# Use the preloaded LLM
query_engine = vector_index.as_query_engine(streaming=True, llm=llm)
streaming_response = query_engine.query(message)
partial_text = ""
for new_text in streaming_response.response_gen:
partial_text += new_text
# Yield an empty string to cleanup the message textbox and the updated conversation history
yield partial_text
except (AttributeError, NameError):
print("An error occurred while processing your request.")
yield "Please upload the file to begin chat."
# Clear function
def clear_state():
global vector_index
vector_index = None
return [None, None, None]
# UI Setup
with gr.Blocks(
theme=gr.themes.Default(
primary_hue="green",
secondary_hue="blue",
font=[gr.themes.GoogleFont("Poppins")],
),
css="footer {visibility: hidden}",
) as demo:
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(
file_count="single", type="filepath", label="Upload Document"
)
with gr.Row():
btn = gr.Button("Submit", variant="primary")
clear = gr.Button("Clear")
output = gr.Textbox(label="Status")
with gr.Column(scale=3):
chatbot = gr.ChatInterface(
fn=respond,
chatbot=gr.Chatbot(height=300),
theme="soft",
show_progress="full",
textbox=gr.Textbox(
placeholder="Ask questions about the uploaded document!",
container=False,
),
)
# Set up Gradio interactions
btn.click(fn=load_files, inputs=file_input, outputs=output)
clear.click(
fn=clear_state, # Use the clear_state function
outputs=[file_input, output],
)
# Launch the demo
if __name__ == "__main__":
demo.launch()