Praveen998 commited on
Commit
03e560e
·
1 Parent(s): 9473f6e

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. app.py +146 -14
app.py CHANGED
@@ -26,27 +26,159 @@ def on_btn_click():
26
 
27
 
28
  def main():
29
- st.title(" Image Prediction (Computer Vision)")
30
- option = st.selectbox(" ImageNet / CoCo", [" ImageNet ", " CoCo"])
31
- value = st.slider(" Threshold", min_value=0, max_value=100, value=50, key=62)
32
  (
33
  col1,
34
  col2,
35
  ) = st.columns(2)
36
  with col1:
37
- if st.checkbox(" Remove Noise"):
38
- st.write("Checkbox checked!")
 
 
 
 
 
 
 
 
 
 
 
 
 
39
  with col2:
40
- if st.checkbox(" Increase Resolution"):
41
- st.write("Checkbox checked!")
42
- uploaded_file = st.file_uploader("Choose a file", type=["jpg", "png", "mp3"])
43
- if st.button(" Predict"):
44
- st.write("Button clicked!")
45
- st.subheader(" Original vs Predicted")
46
- image_comparison(
47
- img1="https://www.imgonline.com.ua/examples/red-yellow-flower.jpg",
48
- img2="https://lettatai.sirv.com/imgonline-com-ua-Negative-lYz1br1SWE.jpg",
 
 
49
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
 
51
 
52
  if __name__ == "__main__":
 
26
 
27
 
28
  def main():
29
+ st.title(" All Graphs")
 
 
30
  (
31
  col1,
32
  col2,
33
  ) = st.columns(2)
34
  with col1:
35
+ st.line_chart(
36
+ pd.DataFrame(
37
+ {
38
+ "Apple": yf.download("AAPL", start="2023-01-01", end="2023-07-31")[
39
+ "Adj Close"
40
+ ],
41
+ "Google": yf.download(
42
+ "GOOGL", start="2023-01-01", end="2023-07-31"
43
+ )["Adj Close"],
44
+ "Microsoft": yf.download(
45
+ "MSFT", start="2023-01-01", end="2023-07-31"
46
+ )["Adj Close"],
47
+ }
48
+ )
49
+ )
50
  with col2:
51
+ data = pd.DataFrame(
52
+ {"X": [1, 2, 3, 4, 5], "Y1": [10, 16, 8, 14, 12], "Y2": [5, 8, 3, 6, 7]}
53
+ )
54
+ st.area_chart(data)
55
+ st.plotly_chart(
56
+ ff.create_distplot(
57
+ [np.random.randn(200) - 2, np.random.randn(200), np.random.randn(200) + 2],
58
+ ["Negative Shift", "Normal", "Positive Shift"],
59
+ bin_size=[0.1, 0.25, 0.5],
60
+ ),
61
+ use_container_width=True,
62
  )
63
+ source = vds.cars()
64
+ chart = {
65
+ "mark": "point",
66
+ "encoding": {
67
+ "x": {"field": "Horsepower", "type": "quantitative"},
68
+ "y": {"field": "Miles_per_Gallon", "type": "quantitative"},
69
+ "color": {"field": "Origin", "type": "nominal"},
70
+ "shape": {"field": "Origin", "type": "nominal"},
71
+ },
72
+ }
73
+ tab1, tab2 = st.tabs(["Streamlit theme (default)", "Vega-Lite native theme"])
74
+ with tab1:
75
+ st.vega_lite_chart(source, chart, theme="streamlit", use_container_width=True)
76
+ with tab2:
77
+ st.vega_lite_chart(source, chart, theme=None, use_container_width=True)
78
+ st.altair_chart(
79
+ alt.Chart(
80
+ pd.DataFrame(
81
+ {
82
+ "x": np.random.rand(50),
83
+ "y": np.random.rand(50),
84
+ "size": np.random.randint(10, 100, 50),
85
+ "color": np.random.rand(50),
86
+ }
87
+ )
88
+ )
89
+ .mark_circle()
90
+ .encode(
91
+ x="x",
92
+ y="y",
93
+ size="size",
94
+ color="color",
95
+ tooltip=["x", "y", "size", "color"],
96
+ )
97
+ .properties(width=600, height=400),
98
+ use_container_width=True,
99
+ )
100
+ st.bar_chart(
101
+ pd.DataFrame(np.random.randn(20, 3), columns=["Apple", "Banana", "Cherry"])
102
+ )
103
+ st.pydeck_chart(
104
+ pdk.Deck(
105
+ map_style=None,
106
+ initial_view_state=pdk.ViewState(
107
+ latitude=37.76, longitude=-122.4, zoom=11, pitch=50
108
+ ),
109
+ layers=[
110
+ pdk.Layer(
111
+ "HexagonLayer",
112
+ data=pd.DataFrame(
113
+ np.random.randn(1000, 2) / [50, 50] + [37.76, -122.4],
114
+ columns=["lat", "lon"],
115
+ ),
116
+ get_position="[lon, lat]",
117
+ radius=200,
118
+ elevation_scale=4,
119
+ elevation_range=[0, 1000],
120
+ pickable=True,
121
+ extruded=True,
122
+ ),
123
+ pdk.Layer(
124
+ "ScatterplotLayer",
125
+ data=pd.DataFrame(
126
+ np.random.randn(1000, 2) / [50, 50] + [37.76, -122.4],
127
+ columns=["lat", "lon"],
128
+ ),
129
+ get_position="[lon, lat]",
130
+ get_color="[200, 30, 0, 160]",
131
+ get_radius=200,
132
+ ),
133
+ ],
134
+ )
135
+ )
136
+ import datetime
137
+
138
+ np.random.seed(1)
139
+ programmers = ["Alex", "Nicole", "Sara", "Etienne", "Chelsea", "Jody", "Marianne"]
140
+ base = datetime.datetime.today()
141
+ dates = base - np.arange(180) * datetime.timedelta(days=1)
142
+ z = np.random.poisson(size=(len(programmers), len(dates)))
143
+ fig = go.Figure(data=go.Heatmap(z=z, x=dates, y=programmers, colorscale="Viridis"))
144
+ fig.update_layout(title="GitHub commits per day", xaxis_nticks=36)
145
+ st.plotly_chart(fig)
146
+ (
147
+ col1,
148
+ col2,
149
+ ) = st.columns(2)
150
+ with col1:
151
+ df = px.data.gapminder().query("year == 2007").query("continent == 'Americas'")
152
+ fig = px.pie(
153
+ df,
154
+ values="pop",
155
+ names="country",
156
+ title="Population of American continent",
157
+ hover_data=["lifeExp"],
158
+ labels={"lifeExp": "life expectancy"},
159
+ )
160
+ fig.update_traces(textposition="inside", textinfo="percent+label")
161
+ st.plotly_chart(fig)
162
+ with col2:
163
+ fig = go.Figure(
164
+ go.Sunburst(
165
+ labels=[
166
+ "Eve",
167
+ "Cain",
168
+ "Seth",
169
+ "Enos",
170
+ "Noam",
171
+ "Abel",
172
+ "Awan",
173
+ "Enoch",
174
+ "Azura",
175
+ ],
176
+ parents=["", "Eve", "Eve", "Seth", "Seth", "Eve", "Eve", "Awan", "Eve"],
177
+ values=[10, 14, 12, 10, 2, 6, 6, 4, 4],
178
+ )
179
+ )
180
+ fig.update_layout(margin=dict(t=0, l=0, r=0, b=0))
181
+ st.plotly_chart(fig)
182
 
183
 
184
  if __name__ == "__main__":