Praveen998 commited on
Commit
3d8f4dd
·
1 Parent(s): ad1c4cd

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. app.py +103 -57
app.py CHANGED
@@ -26,90 +26,136 @@ def on_btn_click():
26
 
27
 
28
  def main():
29
- st.title(" US Real Estate Data and Market Trends")
 
 
30
  (
31
  col1,
32
  col2,
33
  ) = st.columns(2)
34
  with col1:
35
- option = st.selectbox(" Monthly / Weekly", [" Monthly ", " Weekly"])
36
  with col2:
37
- option = st.selectbox(" Current / Historical", [" Current ", " Historical"])
 
 
38
  (
39
  col1,
40
  col2,
41
  ) = st.columns(2)
42
  with col1:
43
- option = st.selectbox(" Median / Mean", [" Median ", " Mean"])
 
 
44
  with col2:
45
- option = st.selectbox(" San Francisco", [" San Francisco"])
 
 
46
  (
47
  col1,
48
  col2,
49
  ) = st.columns(2)
50
  with col1:
51
- selected_color = st.color_picker(" Choose a palate", "#FF0000")
52
  with col2:
53
- value = st.slider(" No of colors", min_value=0, max_value=100, value=50, key=45)
54
- if st.checkbox(" Show raw data"):
55
- st.write("Checkbox checked!")
56
- st.subheader(" Global 3D Visualization")
57
- st.pydeck_chart(
58
- pdk.Deck(
59
- map_style=None,
60
- initial_view_state=pdk.ViewState(
61
- latitude=37.76, longitude=-122.4, zoom=11, pitch=50
62
- ),
63
- layers=[
64
- pdk.Layer(
65
- "HexagonLayer",
66
- data=pd.DataFrame(
67
- np.random.randn(1000, 2) / [50, 50] + [37.76, -122.4],
68
- columns=["lat", "lon"],
69
- ),
70
- get_position="[lon, lat]",
71
- radius=200,
72
- elevation_scale=4,
73
- elevation_range=[0, 1000],
74
- pickable=True,
75
- extruded=True,
76
- ),
77
- pdk.Layer(
78
- "ScatterplotLayer",
79
- data=pd.DataFrame(
80
- np.random.randn(1000, 2) / [50, 50] + [37.76, -122.4],
81
- columns=["lat", "lon"],
82
- ),
83
- get_position="[lon, lat]",
84
- get_color="[200, 30, 0, 160]",
85
- get_radius=200,
86
- ),
87
- ],
88
  )
89
- )
90
- st.subheader(" 2D Visualization")
91
- st.altair_chart(
92
- alt.Chart(
93
  pd.DataFrame(
94
  {
95
- "x": np.random.rand(50),
96
- "y": np.random.rand(50),
97
- "size": np.random.randint(10, 100, 50),
98
- "color": np.random.rand(50),
 
 
 
 
 
99
  }
100
  )
101
  )
102
- .mark_circle()
103
- .encode(
104
- x="x",
105
- y="y",
106
- size="size",
107
- color="color",
108
- tooltip=["x", "y", "size", "color"],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
109
  )
110
- .properties(width=600, height=400),
 
 
 
 
 
111
  use_container_width=True,
112
  )
 
113
 
114
 
115
  if __name__ == "__main__":
 
26
 
27
 
28
  def main():
29
+ st.write("Hello, world!")
30
+ st.header(" Al Generated this app - spotify recommendations")
31
+ st.subheader(" this application contains the auto generated layout")
32
  (
33
  col1,
34
  col2,
35
  ) = st.columns(2)
36
  with col1:
37
+ st.write("Hello, world!")
38
  with col2:
39
+ option = st.selectbox(
40
+ " gender / male / female", [" gender ", " male ", " female"]
41
+ )
42
  (
43
  col1,
44
  col2,
45
  ) = st.columns(2)
46
  with col1:
47
+ value = st.slider(
48
+ " max predictions", min_value=0, max_value=100, value=50, key=61
49
+ )
50
  with col2:
51
+ value = st.slider(
52
+ " num categories", min_value=0, max_value=100, value=50, key=65
53
+ )
54
  (
55
  col1,
56
  col2,
57
  ) = st.columns(2)
58
  with col1:
59
+ option = st.radio("Choose an option:", ["Option 1", "Option 2", "Option 3"])
60
  with col2:
61
+ if st.checkbox("Check me"):
62
+ st.write("Checkbox checked!")
63
+ if st.button(" generate recommendations"):
64
+ st.write("Button clicked!")
65
+ (
66
+ col1,
67
+ col2,
68
+ ) = st.columns(2)
69
+ with col1:
70
+ st.table(
71
+ {
72
+ "Country": ["USA", "Canada", "UK", "Australia"],
73
+ "Population (millions)": [331, 38, 66, 25],
74
+ "GDP (trillion USD)": [22.675, 1.843, 2.855, 1.488],
75
+ }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76
  )
77
+ with col2:
78
+ st.line_chart(
 
 
79
  pd.DataFrame(
80
  {
81
+ "Apple": yf.download("AAPL", start="2023-01-01", end="2023-07-31")[
82
+ "Adj Close"
83
+ ],
84
+ "Google": yf.download(
85
+ "GOOGL", start="2023-01-01", end="2023-07-31"
86
+ )["Adj Close"],
87
+ "Microsoft": yf.download(
88
+ "MSFT", start="2023-01-01", end="2023-07-31"
89
+ )["Adj Close"],
90
  }
91
  )
92
  )
93
+ (
94
+ col1,
95
+ col2,
96
+ ) = st.columns(2)
97
+ with col1:
98
+ data = pd.DataFrame(
99
+ {"X": [1, 2, 3, 4, 5], "Y1": [10, 16, 8, 14, 12], "Y2": [5, 8, 3, 6, 7]}
100
+ )
101
+ st.area_chart(data)
102
+ with col2:
103
+ st.bar_chart(
104
+ pd.DataFrame(np.random.randn(20, 3), columns=["Apple", "Banana", "Cherry"])
105
+ )
106
+ (
107
+ col1,
108
+ col2,
109
+ ) = st.columns(2)
110
+ with col1:
111
+ st.write("Hello, world!")
112
+ with col2:
113
+ df = px.data.gapminder().query("year == 2007").query("continent == 'Americas'")
114
+ fig = px.pie(
115
+ df,
116
+ values="pop",
117
+ names="country",
118
+ title="Population of American continent",
119
+ hover_data=["lifeExp"],
120
+ labels={"lifeExp": "life expectancy"},
121
+ )
122
+ fig.update_traces(textposition="inside", textinfo="percent+label")
123
+ st.plotly_chart(fig)
124
+ source = vds.cars()
125
+ chart = {
126
+ "mark": "point",
127
+ "encoding": {
128
+ "x": {"field": "Horsepower", "type": "quantitative"},
129
+ "y": {"field": "Miles_per_Gallon", "type": "quantitative"},
130
+ "color": {"field": "Origin", "type": "nominal"},
131
+ "shape": {"field": "Origin", "type": "nominal"},
132
+ },
133
+ }
134
+ tab1, tab2 = st.tabs(["Streamlit theme (default)", "Vega-Lite native theme"])
135
+ with tab1:
136
+ st.vega_lite_chart(source, chart, theme="streamlit", use_container_width=True)
137
+ with tab2:
138
+ st.vega_lite_chart(source, chart, theme=None, use_container_width=True)
139
+ (
140
+ col1,
141
+ col2,
142
+ ) = st.columns(2)
143
+ with col1:
144
+ st.video("https://www.youtube.com/watch?v=50hVvC7gMR8&t=5s", format="video/mp4")
145
+ with col2:
146
+ st.image(
147
+ "https://assets-global.website-files.com/59e16042ec229e00016d3a66/6441d5f76d21e1e4dee9ffa2_Gen%20AI%20blog_Blog%20hero.png",
148
+ caption="Image Caption",
149
  )
150
+ st.plotly_chart(
151
+ ff.create_distplot(
152
+ [np.random.randn(200) - 2, np.random.randn(200), np.random.randn(200) + 2],
153
+ ["Negative Shift", "Normal", "Positive Shift"],
154
+ bin_size=[0.1, 0.25, 0.5],
155
+ ),
156
  use_container_width=True,
157
  )
158
+ st.header(" auto generated by sketch2streamiit")
159
 
160
 
161
  if __name__ == "__main__":