import streamlit as st import pandas as pd import numpy as np import yfinance as yf import altair as alt import plotly.figure_factory as ff import pydeck as pdk from vega_datasets import data as vds import plotly.express as px import plotly.graph_objects as go from plotly.subplots import make_subplots from streamlit_image_comparison import image_comparison def on_input_change(): user_input = st.session_state.user_input st.session_state.past.append(user_input) st.session_state.generated.append( {"data": "The messages from Bot\nWith new line", "type": "normal"} ) def on_btn_click(): del st.session_state.past[:] del st.session_state.generated[:] def main(): st.title(" Image Prediction (Computer Vision)") option = st.selectbox(" ImageNet / CoCo", [" ImageNet ", " CoCo"]) value = st.slider(" Threshold", min_value=0, max_value=100, value=50, key=65) ( col1, col2, ) = st.columns(2) with col1: if st.checkbox(" Remove Noise"): st.write("Checkbox checked!") with col2: if st.checkbox(" Increase Resolution"): st.write("Checkbox checked!") uploaded_file = st.file_uploader("Choose a file", type=["jpg", "png", "mp3"]) if st.button(" Predict"): st.write("Button clicked!") st.subheader(" Original vs Predicted") image_comparison( img1="https://www.imgonline.com.ua/examples/red-yellow-flower.jpg", img2="https://lettatai.sirv.com/imgonline-com-ua-Negative-lYz1br1SWE.jpg", ) if __name__ == "__main__": main()