Spaces:
Runtime error
Runtime error
import numpy as np | |
from models import chat_with_model, embed | |
from prompts import create_gen_prompt, create_judge_prompt | |
import time | |
from concurrent.futures import ThreadPoolExecutor, as_completed | |
import threading | |
import streamlit as st # Import Streamlit | |
def process_question(question, model_name, open_router_key, openai_api_key): | |
start_time = time.time() | |
st.write(f"<span style='color:red'>{question}</span>", unsafe_allow_html=True) # Display question in red | |
previous_answers = [] | |
question_novelty = 0 | |
try: | |
while True: | |
gen_prompt = create_gen_prompt(question, previous_answers) | |
try: | |
new_answer = chat_with_model(prompt=gen_prompt, model=model_name, open_router_key=open_router_key, openai_api_key=openai_api_key) | |
except Exception as e: | |
st.write(f"<span style='color:red'>Error generating answer: {str(e)}</span>", unsafe_allow_html=True) # Display error in red | |
break | |
judge_prompt = create_judge_prompt(question, new_answer) | |
judge = "openai/gpt-4o-mini" | |
try: | |
judge_response = chat_with_model(prompt=judge_prompt, model=judge, open_router_key=open_router_key, openai_api_key=openai_api_key) | |
except Exception as e: | |
st.write(f"<span style='color:red'>Error getting judge response: {str(e)}</span>", unsafe_allow_html=True) # Display error in red | |
break | |
coherence_score = int(judge_response.split("<coherence_score>")[1].split("</coherence_score>")[0]) | |
if coherence_score <= 3: | |
st.write("<span style='color:yellow'>Output is incoherent. Moving to next question.</span>", unsafe_allow_html=True) # Display warning in yellow | |
break | |
novelty_score = get_novelty_score(new_answer, previous_answers, openai_api_key) | |
if novelty_score < 0.1: | |
st.write("<span style='color:yellow'>Output is redundant. Moving to next question.</span>", unsafe_allow_html=True) # Display warning in yellow | |
break | |
st.write(f"**New Answer:**\n{new_answer}") | |
st.write(f"<span style='color:green'>Coherence Score: {coherence_score}</span>", unsafe_allow_html=True) # Display coherence score in green | |
st.write(f"**Novelty Score:** {novelty_score}") | |
previous_answers.append(new_answer) | |
question_novelty += novelty_score | |
except Exception as e: | |
st.write(f"<span style='color:red'>Unexpected error processing question: {str(e)}</span>", unsafe_allow_html=True) # Display error in red | |
time_taken = time.time() - start_time | |
st.write(f"<span style='color:blue'>Total novelty score for this question: {question_novelty}</span>", unsafe_allow_html=True) # Display novelty score in blue | |
st.write(f"<span style='color:blue'>Time taken: {time_taken} seconds</span>", unsafe_allow_html=True) # Display time taken in blue | |
return question_novelty, [ | |
{ | |
"question": question, | |
"answers": previous_answers, | |
"coherence_score": coherence_score, | |
"novelty_score": question_novelty | |
} | |
] | |
def get_novelty_score(new_answer: str, previous_answers: list, openai_api_key): | |
new_embedding = embed(new_answer, openai_api_key) | |
# If there are no previous answers, return maximum novelty | |
if not previous_answers: | |
return 1.0 | |
previous_embeddings = [embed(answer, openai_api_key) for answer in previous_answers] | |
similarities = [ | |
np.dot(new_embedding, prev_embedding) / | |
(np.linalg.norm(new_embedding) * np.linalg.norm(prev_embedding)) | |
for prev_embedding in previous_embeddings | |
] | |
max_similarity = max(similarities) | |
novelty = 1 - max_similarity | |
return novelty | |
def benchmark_model_multithreaded(model_name, questions, open_router_key, openai_api_key): | |
novelty_score = 0 | |
print_lock = threading.Lock() # Lock for thread-safe printing | |
results = [] | |
with ThreadPoolExecutor(max_workers=len(questions)) as executor: | |
future_to_question = {executor.submit( | |
process_question, question, model_name, open_router_key, openai_api_key): question for question in questions} | |
for future in as_completed(future_to_question): | |
question = future_to_question[future] | |
try: | |
question_novelty, question_results = future.result() | |
with print_lock: | |
novelty_score += question_novelty | |
results.extend(question_results) | |
st.write(f"<span style='color:yellow'>Total novelty score across all questions (so far): {novelty_score}</span>", unsafe_allow_html=True) | |
except Exception as e: | |
with print_lock: | |
st.write(f"<span style='color:red'>Error in thread: {str(e)}</span>", unsafe_allow_html=True) | |
st.write(f"<span style='color:yellow'>Final total novelty score across all questions: {novelty_score}</span>", unsafe_allow_html=True) | |
return results | |
def benchmark_model_sequential(model_name, questions, open_router_key, openai_api_key): | |
novelty_score = 0 | |
results = [] | |
for i, question in enumerate(questions): | |
question_novelty, question_results = process_question(question, model_name, open_router_key, openai_api_key) | |
novelty_score += question_novelty | |
results.extend(question_results) | |
st.write(f"<span style='color:yellow'>Total novelty score across processed questions: {novelty_score}</span>", unsafe_allow_html=True) # Display progress after each question | |
st.write(f"<span style='color:yellow'>Final total novelty score across all questions: {novelty_score}</span>", unsafe_allow_html=True) | |
return results | |