Prgckwb's picture
:tada: change some process
1dcfe8d
raw
history blame
6.39 kB
import gradio as gr
import spaces
import torch
from PIL import Image
from diffusers import DiffusionPipeline
from diffusers.utils import make_image_grid
from src.example import EXAMPLES
DIFFUSERS_MODEL_IDS = [
# SD Models
"stabilityai/stable-diffusion-3-medium-diffusers",
"stabilityai/stable-diffusion-xl-base-1.0",
"stabilityai/stable-diffusion-2-1",
"runwayml/stable-diffusion-v1-5",
# Other Models
"Prgckwb/trpfrog-diffusion",
]
EXTERNAL_MODEL_MAPPING = {
"Beautiful Realistic Asians": "checkpoints/diffusers/Beautiful Realistic Asians v7",
}
MODEL_CHOICES = DIFFUSERS_MODEL_IDS + list(EXTERNAL_MODEL_MAPPING.keys())
device = "cuda" if torch.cuda.is_available() else "cpu"
def load_pipeline(model_id, use_model_offload, safety_checker):
# Diffusers リポジトリ内のモデル
if model_id in DIFFUSERS_MODEL_IDS:
pipe = DiffusionPipeline.from_pretrained(
model_id,
torch_dtype=torch.float16,
)
# CIVITAI 系列由来のモデル
else:
pipe = DiffusionPipeline.from_pretrained(
EXTERNAL_MODEL_MAPPING[model_id],
torch_dtype=torch.float16,
)
# Load Textual Inversion
pipe.load_textual_inversion('checkpoints/embeddings/BadNegAnatomyV1 neg.pt', token='BadNegAnatomyV1-neg')
pipe.load_textual_inversion('checkpoints/embeddings/Deep Negative V1 75T.pt', token='DeepNegativeV1')
pipe.load_textual_inversion('checkpoints/embeddings/easynegative.safetensors', token='EasyNegative')
# VRAM が少ないとき用の対策
if use_model_offload:
pipe.enable_model_cpu_offload()
else:
pipe = pipe.to(device)
return pipe
@spaces.GPU(duration=120)
@torch.inference_mode()
def inference(
prompt: str,
model_id: str = "stabilityai/stable-diffusion-3-medium-diffusers",
negative_prompt: str = "",
width: int = 512,
height: int = 512,
guidance_scale: float = 7.5,
num_inference_steps: int = 50,
num_images: int = 4,
safety_checker: bool = True,
use_model_offload: bool = False,
seed: int = 8888,
progress=gr.Progress(track_tqdm=True),
) -> Image.Image:
progress(0, 'Loading pipeline...')
pipe = load_pipeline(model_id, use_model_offload, safety_checker)
generator = torch.Generator(device=device).manual_seed(seed)
progress(0.3, 'Generating images...')
images = pipe(
prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_images_per_prompt=num_images,
generator=generator,
).images
progress(0.9, f'Done generating {num_images} images')
if num_images % 2 == 1:
image = make_image_grid(images, rows=num_images, cols=1)
else:
image = make_image_grid(images, rows=2, cols=num_images // 2)
return image
def build_interface():
"""Build Gradio Interface"""
theme = gr.themes.Default(primary_hue=gr.themes.colors.emerald)
with gr.Blocks(theme=theme) as interface:
gr.Markdown(f"# Stable Diffusion Demo")
with gr.Row():
with gr.Column():
prompt = gr.Text(label="Prompt", placeholder="Enter a prompt here")
model_id = gr.Dropdown(
label="Model ID",
choices=MODEL_CHOICES,
value="stabilityai/stable-diffusion-3-medium-diffusers",
)
# Additional Input Settings
with gr.Accordion("Additional Settings", open=False):
negative_prompt = gr.Text(label="Negative Prompt", value="", )
with gr.Row():
width = gr.Number(label="Width", value=512, step=64, minimum=64, maximum=2048)
height = gr.Number(label="Height", value=512, step=64, minimum=64, maximum=2048)
num_images = gr.Number(label="Num Images", value=4, minimum=1, maximum=10, step=1)
seed = gr.Number(label="Seed", value=8888, step=1)
guidance_scale = gr.Slider(label="Guidance Scale", value=7.5, step=0.5, minimum=0, maximum=10)
num_inference_step = gr.Slider(
label="Num Inference Steps", value=50, minimum=1, maximum=100, step=2
)
with gr.Row():
use_safety_checker = gr.Checkbox(value=True, label='Use Safety Checker')
use_model_offload = gr.Checkbox(value=False, label='Use Model Offload')
with gr.Accordion(label='Notes', open=False):
# language=HTML
notes = gr.HTML(
"""
<h2>Negative Embeddings</h2>
<p>If you want to use negative embedding, use the following tokens in the prompt.</p>
<ul>
<li><a href='https://civitai.com/models/59614/badneganatomy-textual-inversion'>BadNegAnatomyV1-neg</a></li>
<li><a href='https://civitai.com/models/4629/deep-negative-v1x'>DeepNegativeV1</a> </li>
<li><a href='https://civitai.com/models/7808/easynegative'>EasyNegative</a></li>
</ul>
"""
)
with gr.Column():
output_image = gr.Image(label="Image", type="pil")
inputs = [
prompt,
model_id,
negative_prompt,
width,
height,
guidance_scale,
num_inference_step,
num_images,
use_safety_checker,
use_model_offload,
seed,
]
btn = gr.Button("Generate")
btn.click(
fn=inference,
inputs=inputs,
outputs=output_image
)
gr.Examples(
examples=EXAMPLES,
inputs=inputs,
outputs=output_image,
fn=inference,
cache_examples='lazy'
)
return interface
if __name__ == "__main__":
iface = build_interface()
iface.queue().launch()