Priyanshuchaudhary2425 commited on
Commit
5f54a97
1 Parent(s): ac9ef27

launching!

Browse files
DOG-BREED-CLASSIFICATION-MODEL.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f577ab51f67625c7f5f89049f01da86541fa527232ff5999cd271003918d4f1
3
+ size 31932425
app.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### 1. Imports and class names setup ###
2
+ import gradio as gr
3
+ import os
4
+ import torch
5
+
6
+ from model import create_effnetb2_model
7
+ from timeit import default_timer as timer
8
+ from typing import Tuple, Dict
9
+
10
+ ### 2. Model and transforms preparation ###
11
+
12
+ # Create EffNetB2 model
13
+ effnetb2, effnetb2_transforms = create_effnetb2_model(
14
+ num_classes=120,
15
+ )
16
+
17
+ # Load saved weights
18
+ effnetb2.load_state_dict(
19
+ torch.load(
20
+ f="DOG-BREED-CLASSIFICATION-MODEL.pth",
21
+ map_location=torch.device("cpu"), # load to CPU
22
+ )
23
+ )
24
+
25
+
26
+ ### 3. Predict function ###
27
+
28
+ def predict(img) -> Tuple[Dict, float]:
29
+ """Transforms and performs a prediction on img and returns prediction and time taken.
30
+ """
31
+ # Start the timer
32
+ start_time = timer()
33
+
34
+ # Transform the target image and add a batch dimension
35
+ img = effnetb2_transforms(img).unsqueeze(0)
36
+
37
+ # Put model into evaluation mode and turn on inference mode
38
+ best_model.eval()
39
+ with torch.inference_mode():
40
+ # Pass the transformed image through the model and turn the prediction logits into prediction probabilities
41
+ pred_probs = torch.softmax(best_model(img), dim=1)
42
+
43
+ # Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
44
+ pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
45
+
46
+ # Calculate the prediction time
47
+ pred_time = round(timer() - start_time, 5)
48
+
49
+ # Return the prediction dictionary and prediction time
50
+ return pred_labels_and_probs, pred_time
51
+
52
+
53
+ ### 4. Gradio app ###
54
+
55
+ # Create title, description and article strings
56
+ title = "🐶DOG BREED CLASSIFICATION🐶"
57
+ description = "An EfficientNetB2 feature extractor computer vision model to classify different class of dog breeds "
58
+ article = "Created at [Google Colab](https://colab.research.google.com/drive/1pxA88oSjeoXS4Kt9fKAWIBaHlXwJ0vQr#scrollTo=e7MgaOxqEVJn)."
59
+
60
+ # Create the Gradio demo
61
+ demo = gr.Interface(fn=predict, # mapping function from input to output
62
+ inputs=gr.Image(type="pil"), # what are the inputs?
63
+ outputs=[gr.Label(num_top_classes=3, label="Predictions"), # what are the outputs?
64
+ gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs
65
+ examples=example_list,
66
+ title=title,
67
+ description=description,
68
+ article=article)
69
+
70
+ # Launch the demo!
71
+ demo.launch()
examples/n02087046_2276.jpg ADDED
examples/n02100236_111.jpg ADDED
examples/n02116738_5519.jpg ADDED
model.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torchvision
3
+
4
+ from torch import nn
5
+
6
+
7
+ def create_effnetb2_model(num_classes:int=120,
8
+ seed:int=42):
9
+ """Creates an EfficientNetB2 feature extractor model and transforms.
10
+
11
+ Args:
12
+ num_classes (int, optional): number of classes in the classifier head.
13
+ Defaults to 3.
14
+ seed (int, optional): random seed value. Defaults to 42.
15
+
16
+ Returns:
17
+ model (torch.nn.Module): EffNetB2 feature extractor model.
18
+ transforms (torchvision.transforms): EffNetB2 image transforms.
19
+ """
20
+ # Create EffNetB2 pretrained weights, transforms and model
21
+ weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
22
+ transforms = weights.transforms()
23
+ model = torchvision.models.efficientnet_b2(weights=weights)
24
+
25
+ # Freeze all layers in base model
26
+ for param in model.parameters():
27
+ param.requires_grad = False
28
+
29
+ # Change classifier head with random seed for reproducibility
30
+ torch.manual_seed(seed)
31
+ model.classifier = nn.Sequential(
32
+ nn.Dropout(p=0.3, inplace=True),
33
+ nn.Linear(in_features=1408, out_features=num_classes),
34
+ )
35
+
36
+ return model, transforms
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ torch==1.12.0
2
+ torchvision==0.13.0
3
+ gradio==4.13.0