Profakerr commited on
Commit
dffbf86
·
verified ·
1 Parent(s): 7ced9e6

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +110 -0
  2. requirements.txt +6 -0
app.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
2
+ import torch
3
+ import gradio as gr
4
+ import spaces
5
+
6
+
7
+ lora_path = "OedoSoldier/detail-tweaker-lora"
8
+
9
+ @spaces.GPU
10
+ def generate_image(prompt, negative_prompt, num_inference_steps=50, guidance_scale=7.5,model="Real6.0"):
11
+ """
12
+ Generate an image using Stable Diffusion based on the input prompt
13
+ """
14
+
15
+ if model == "Real5.0":
16
+ model_id = "SG161222/Realistic_Vision_V5.0_noVAE"
17
+
18
+ elif model == "Real5.1":
19
+ model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
20
+
21
+ else:
22
+ model_id = "SG161222/Realistic_Vision_V6.0_B1_noVAE"
23
+
24
+
25
+ pipe = DiffusionPipeline.from_pretrained(model_id).to("cuda")
26
+
27
+ if model == "Real6.0":
28
+ pipe.safety_checker = lambda images, **kwargs: (images, [False] * len(images))
29
+
30
+ pipe.load_lora_weights(lora_path)
31
+
32
+ pipe.scheduler = DPMSolverMultistepScheduler.from_config(
33
+ pipe.scheduler.config,
34
+ algorithm_type="dpmsolver++",
35
+ use_karras_sigmas=True
36
+ )
37
+
38
+
39
+ # Generate the image
40
+ image = pipe(
41
+ prompt = prompt,
42
+ negative_prompt = negative_prompt,
43
+ cross_attention_kwargs = {"scale":1},
44
+ num_inference_steps = num_inference_steps,
45
+ guidance_scale = guidance_scale,
46
+ width = 960,
47
+ height = 960
48
+ ).images[0]
49
+
50
+ return image
51
+
52
+ # Create the Gradio interface
53
+ with gr.Blocks() as demo:
54
+ gr.Markdown("# ProFaker ImageGen")
55
+
56
+ with gr.Row():
57
+ with gr.Column():
58
+ # Input components
59
+ prompt = gr.Textbox(
60
+ label="Prompt",
61
+ placeholder="Enter your image description here...",
62
+ value="a photo of an astronaut riding a horse on mars"
63
+ )
64
+ negative_prompt = gr.Textbox(
65
+ label="Negative Prompt",
66
+ placeholder="Enter what you don't want in photo",
67
+ )
68
+ steps_slider = gr.Slider(
69
+ minimum=1,
70
+ maximum=100,
71
+ value=50,
72
+ step=1,
73
+ label="Number of Inference Steps"
74
+ )
75
+ guidance_slider = gr.Slider(
76
+ minimum=1,
77
+ maximum=20,
78
+ value=7.5,
79
+ step=0.5,
80
+ label="Guidance Scale"
81
+ )
82
+ model = gr.Dropdown(
83
+ choices=["Real6.0","Real5.1","Real5.0"],
84
+ value="Real6.0",
85
+ label="Model",
86
+ )
87
+ generate_button = gr.Button("Generate Image")
88
+
89
+ with gr.Column():
90
+ # Output component
91
+ image_output = gr.Image(label="Generated Image")
92
+
93
+ # Connect the interface to the generation function
94
+ generate_button.click(
95
+ fn=generate_image,
96
+ inputs=[prompt, negative_prompt, steps_slider, guidance_slider, model],
97
+ outputs=image_output
98
+ )
99
+
100
+ gr.Markdown("""
101
+ ## Instructions
102
+ 1. Enter your desired image description in the prompt field
103
+ 2. Adjust the inference steps (higher = better quality but slower)
104
+ 3. Adjust the guidance scale (higher = more prompt adherence)
105
+ 4. Click 'Generate Image' and wait for the result
106
+ """)
107
+
108
+ # Launch the interface
109
+ if __name__ == "__main__":
110
+ demo.launch(share=True)
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ spaces
2
+ gradio
3
+ diffusers
4
+ transformers
5
+ accelerate
6
+ peft