Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSequenceClassification
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
# Load models
|
8 |
+
llm = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B")
|
9 |
+
llm_tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
|
10 |
+
reranker = AutoModelForSequenceClassification.from_pretrained("cross-encoder/ms-marco-MiniLM-L-6-v2")
|
11 |
+
reranker_tokenizer = AutoTokenizer.from_pretrained("cross-encoder/ms-marco-MiniLM-L-6-v2")
|
12 |
+
retriever = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
13 |
+
|
14 |
+
def generate_query(document):
|
15 |
+
prompt = f"Generate a relevant search query for the following document:\n\n{document}\n\nQuery:"
|
16 |
+
input_ids = llm_tokenizer.encode(prompt, return_tensors="pt")
|
17 |
+
output = llm.generate(input_ids, max_length=50, num_return_sequences=5)
|
18 |
+
queries = [llm_tokenizer.decode(seq, skip_special_tokens=True) for seq in output]
|
19 |
+
return queries
|
20 |
+
|
21 |
+
def rerank_pairs(queries, document):
|
22 |
+
pairs = [[query, document] for query in queries]
|
23 |
+
inputs = reranker_tokenizer(pairs, padding=True, truncation=True, return_tensors="pt")
|
24 |
+
scores = reranker(**inputs).logits.squeeze(-1)
|
25 |
+
best_query = queries[torch.argmax(scores)]
|
26 |
+
return best_query
|
27 |
+
|
28 |
+
def train_retriever(query_doc_pairs):
|
29 |
+
# This is a placeholder for the actual training process
|
30 |
+
queries, docs = zip(*query_doc_pairs)
|
31 |
+
query_embeddings = retriever.encode(queries)
|
32 |
+
doc_embeddings = retriever.encode(docs)
|
33 |
+
similarity = np.dot(query_embeddings, doc_embeddings.T)
|
34 |
+
return f"Retriever trained on {len(query_doc_pairs)} pairs. Average similarity: {similarity.mean():.4f}"
|
35 |
+
|
36 |
+
def inpars_v2(document):
|
37 |
+
queries = generate_query(document)
|
38 |
+
best_query = rerank_pairs(queries, document)
|
39 |
+
result = train_retriever([(best_query, document)])
|
40 |
+
return f"Generated query: {best_query}\n\n{result}"
|
41 |
+
|
42 |
+
iface = gr.Interface(
|
43 |
+
fn=inpars_v2,
|
44 |
+
inputs=gr.Textbox(lines=5, label="Input Document"),
|
45 |
+
outputs=gr.Textbox(label="Result"),
|
46 |
+
title="InPars-v2 Demo",
|
47 |
+
description="Generate queries and train a retriever using LLMs and rerankers."
|
48 |
+
)
|
49 |
+
|
50 |
+
iface.launch()
|