awacke1 commited on
Commit
b7bc0a0
·
verified ·
1 Parent(s): 28bb1cb

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +50 -0
app.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSequenceClassification
4
+ from sentence_transformers import SentenceTransformer
5
+ import numpy as np
6
+
7
+ # Load models
8
+ llm = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B")
9
+ llm_tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
10
+ reranker = AutoModelForSequenceClassification.from_pretrained("cross-encoder/ms-marco-MiniLM-L-6-v2")
11
+ reranker_tokenizer = AutoTokenizer.from_pretrained("cross-encoder/ms-marco-MiniLM-L-6-v2")
12
+ retriever = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
13
+
14
+ def generate_query(document):
15
+ prompt = f"Generate a relevant search query for the following document:\n\n{document}\n\nQuery:"
16
+ input_ids = llm_tokenizer.encode(prompt, return_tensors="pt")
17
+ output = llm.generate(input_ids, max_length=50, num_return_sequences=5)
18
+ queries = [llm_tokenizer.decode(seq, skip_special_tokens=True) for seq in output]
19
+ return queries
20
+
21
+ def rerank_pairs(queries, document):
22
+ pairs = [[query, document] for query in queries]
23
+ inputs = reranker_tokenizer(pairs, padding=True, truncation=True, return_tensors="pt")
24
+ scores = reranker(**inputs).logits.squeeze(-1)
25
+ best_query = queries[torch.argmax(scores)]
26
+ return best_query
27
+
28
+ def train_retriever(query_doc_pairs):
29
+ # This is a placeholder for the actual training process
30
+ queries, docs = zip(*query_doc_pairs)
31
+ query_embeddings = retriever.encode(queries)
32
+ doc_embeddings = retriever.encode(docs)
33
+ similarity = np.dot(query_embeddings, doc_embeddings.T)
34
+ return f"Retriever trained on {len(query_doc_pairs)} pairs. Average similarity: {similarity.mean():.4f}"
35
+
36
+ def inpars_v2(document):
37
+ queries = generate_query(document)
38
+ best_query = rerank_pairs(queries, document)
39
+ result = train_retriever([(best_query, document)])
40
+ return f"Generated query: {best_query}\n\n{result}"
41
+
42
+ iface = gr.Interface(
43
+ fn=inpars_v2,
44
+ inputs=gr.Textbox(lines=5, label="Input Document"),
45
+ outputs=gr.Textbox(label="Result"),
46
+ title="InPars-v2 Demo",
47
+ description="Generate queries and train a retriever using LLMs and rerankers."
48
+ )
49
+
50
+ iface.launch()