import streamlit as st from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import pandas as pd from fpdf import FPDF import whisper import tempfile from st_audiorec import st_audiorec import numpy as np # Interface utilisateur st.set_page_config( page_title="Traduction de la parole en pictogrammes ARASAAC", page_icon="📝", layout="wide" ) # Charger le modèle et le tokenizer checkpoint = "Propicto/t2p-nllb-200-distilled-600M-all" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint) # Charger le modèle Whisper whisper_model = whisper.load_model("base") # Lire le lexique @st.cache_data def read_lexicon(lexicon): df = pd.read_csv(lexicon, sep='\t') df['keyword_no_cat'] = df['lemma'].str.split(' #').str[0].str.strip().str.replace(' ', '_') return df lexicon = read_lexicon("lexicon.csv") # Processus de sortie de la traduction def process_output_trad(pred): return pred.split() def get_id_picto_from_predicted_lemma(df_lexicon, lemma): if lemma.endswith("!"): lemma = lemma[:-1] id_picto = df_lexicon.loc[df_lexicon['keyword_no_cat'] == lemma, 'id_picto'].tolist() return (id_picto[0], lemma) if id_picto else (0, lemma) # Génération du contenu HTML pour afficher les pictogrammes def generate_html(ids): html_content = '
' for picto_id, lemma in ids: if picto_id != 0: # ignore invalid IDs img_url = f"https://static.arasaac.org/pictograms/{picto_id}/{picto_id}_500.png" html_content += f''' ''' html_content += '' return html_content # Génération du PDF def generate_pdf(ids): pdf = FPDF(orientation='L', unit='mm', format='A4') # 'L' for landscape orientation pdf.add_page() pdf.set_auto_page_break(auto=True, margin=15) # Start positions x_start = 10 y_start = 10 img_width = 50 img_height = 50 spacing = 1 max_width = 297 # A4 landscape width in mm current_x = x_start current_y = y_start for picto_id, lemma in ids: if picto_id != 0: # ignore invalid IDs img_url = f"https://static.arasaac.org/pictograms/{picto_id}/{picto_id}_500.png" pdf.image(img_url, x=current_x, y=current_y, w=img_width, h=img_height) pdf.set_xy(current_x, current_y + img_height + 5) pdf.set_font("Arial", size=12) pdf.cell(img_width, 10, txt=lemma, ln=1, align='C') current_x += img_width + spacing # Move to the next line if exceeds max width if current_x + img_width > max_width: current_x = x_start current_y += img_height + spacing + 10 # Adjust for image height and some spacing pdf_path = "pictograms.pdf" pdf.output(pdf_path) return pdf_path # Initialiser l'état de session if 'transcription' not in st.session_state: st.session_state['transcription'] = None if 'pictogram_ids' not in st.session_state: st.session_state['pictogram_ids'] = None if 'previous_audio_file' not in st.session_state: st.session_state['previous_audio_file'] = None # Interface utilisateur pour l'audio et le bouton de téléchargement st.title("Traduction de la parole en pictogrammes ARASAAC") col1, col2 = st.columns(2) with col1: audio_file = st.file_uploader("Ajouter un fichier audio :", type=["wav", "mp3"]) # Réinitialiser les informations si le fichier audio change if audio_file is not None and audio_file != st.session_state['previous_audio_file']: st.session_state['transcription'] = None st.session_state['pictogram_ids'] = None st.session_state['previous_audio_file'] = audio_file with col2: if audio_file is not None: with st.spinner("Transcription de l'audio en cours..."): with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_file: temp_file.write(audio_file.read()) temp_file_path = temp_file.name transcription = whisper_model.transcribe(temp_file_path, language='fr') if 'transcription' in locals(): st.text_area("Transcription :", transcription['text']) st.session_state['transcription'] = transcription['text'] with st.spinner("Affichage des pictogrammes..."): if st.session_state['transcription'] is not None: inputs = tokenizer(transcription['text'].lower(), return_tensors="pt").input_ids outputs = model.generate(inputs, max_new_tokens=40, do_sample=True, top_k=30, top_p=0.95) pred = tokenizer.decode(outputs[0], skip_special_tokens=True) sentence_to_map = process_output_trad(pred) pictogram_ids = [get_id_picto_from_predicted_lemma(lexicon, lemma) for lemma in sentence_to_map] st.session_state['pictogram_ids'] = [get_id_picto_from_predicted_lemma(lexicon, lemma) for lemma in sentence_to_map] if st.session_state['pictogram_ids'] is not None: html = generate_html(st.session_state['pictogram_ids']) st.components.v1.html(html, height=150, scrolling=True) # Container to hold the download button pdf_path = generate_pdf(st.session_state['pictogram_ids']) with open(pdf_path, "rb") as pdf_file: st.download_button(label="Télécharger la traduction en PDF", data=pdf_file, file_name="pictograms.pdf", mime="application/pdf") # record_audio = st_audiorec() # if record_audio: # audio = np.array(record_audio) # transcription = whisper_model.transcribe(audio, language='fr') # st.success("Enregistrement terminé !")