import streamlit as st from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import pandas as pd from fpdf import FPDF # Interface utilisateur st.set_page_config( page_title="Traduction d'une phrase en pictogrammes ARASAAC", page_icon="📝", layout="wide" ) # Charger le modèle et le tokenizer # checkpoint = "Propicto/t2p-t5-large-orfeo" checkpoint = "Propicto/t2p-nllb-200-distilled-600M-all" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint) # Lire le lexique @st.cache_data def read_lexicon(lexicon): df = pd.read_csv(lexicon, sep='\t') df['keyword_no_cat'] = df['lemma'].str.split(' #').str[0].str.strip().str.replace(' ', '_') return df lexicon = read_lexicon("lexicon.csv") # Processus de sortie de la traduction def process_output_trad(pred): return pred.split() def get_id_picto_from_predicted_lemma(df_lexicon, lemma): if lemma.endswith("!"): lemma = lemma[:-1] id_picto = df_lexicon.loc[df_lexicon['keyword_no_cat'] == lemma, 'id_picto'].tolist() return (id_picto[0], lemma) if id_picto else (0, lemma) # Génération du contenu HTML pour afficher les pictogrammes def generate_html(ids): html_content = '' for picto_id, lemma in ids: if picto_id != 0: # ignore invalid IDs img_url = f"https://static.arasaac.org/pictograms/{picto_id}/{picto_id}_500.png" html_content += f'''
{lemma}
{lemma}
''' html_content += '' return html_content def generate_pdf(ids): pdf = FPDF(orientation='L', unit='mm', format='A4') # 'L' for landscape orientation pdf.add_page() pdf.set_auto_page_break(auto=True, margin=15) # Start positions x_start = 10 y_start = 10 img_width = 50 img_height = 50 spacing = 1 max_width = 297 # A4 landscape width in mm current_x = x_start current_y = y_start for picto_id, lemma in ids: if picto_id != 0: # ignore invalid IDs img_url = f"https://static.arasaac.org/pictograms/{picto_id}/{picto_id}_500.png" pdf.image(img_url, x=current_x, y=current_y, w=img_width, h=img_height) pdf.set_xy(current_x, current_y + img_height + 5) pdf.set_font("Arial", size=12) pdf.cell(img_width, 10, txt=lemma, ln=1, align='C') current_x += img_width + spacing # Move to the next line if exceeds max width if current_x + img_width > max_width: current_x = x_start current_y += img_height + spacing + 10 # Adjust for image height and some spacing pdf_path = "pictograms.pdf" pdf.output(pdf_path) return pdf_path st.title("Traduction d'une phrase en pictogrammes ARASAAC") st.info("Text-to-Pictograms traduit une phrase en français en pictogrammes ARASAAC. Renseignez une phrase, puis validez. Vous pouvez sauvegarder la traduction au format PDF en cliquant sur le bouton en bas de page.", icon='ℹ️') pictogram_ids = [] sentence = st.text_input("Entrez une phrase en français:") if sentence: with st.spinner("Affichage des pictogrammes..."): inputs = tokenizer(sentence, return_tensors="pt").input_ids outputs = model.generate(inputs, max_new_tokens=40, do_sample=True, top_k=30, top_p=0.95) pred = tokenizer.decode(outputs[0], skip_special_tokens=True) sentence_to_map = process_output_trad(pred) pictogram_ids = [get_id_picto_from_predicted_lemma(lexicon, lemma) for lemma in sentence_to_map] html = generate_html(pictogram_ids) st.components.v1.html(html, height=200, scrolling=True) if pictogram_ids: # Container to hold the download button pdf_path = generate_pdf(pictogram_ids) with open(pdf_path, "rb") as pdf_file: st.download_button(label="Télécharger la traduction en PDF", data=pdf_file, file_name="pictograms.pdf", mime="application/pdf")