Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- Montserrat-Bold.ttf +0 -0
- agents.py +147 -0
- app.py +33 -0
- tools.py +421 -0
Montserrat-Bold.ttf
ADDED
Binary file (29.6 kB). View file
|
|
agents.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from crewai import Agent, Task
|
2 |
+
from tools import llm, create_video_from_images_and_audio, image_generator, speech_generator, wiki_tool
|
3 |
+
|
4 |
+
script_agent = Agent(
|
5 |
+
role='Senior Content Writer',
|
6 |
+
goal='Craft engaging, concise, and informative narrations for YouTube short videos',
|
7 |
+
backstory="""As a seasoned content writer, you excel at breaking down complex topics into captivating narratives that educate and entertain audiences. Your expertise lies in writing concise, attention-grabbing scripts for YouTube short videos.""",
|
8 |
+
verbose=True,
|
9 |
+
llm=llm,
|
10 |
+
allow_delegation=False
|
11 |
+
)
|
12 |
+
|
13 |
+
image_descriptive_agent = Agent(
|
14 |
+
role='Visual Storyteller',
|
15 |
+
goal='Design stunning, contextually relevant visuals for YouTube short videos',
|
16 |
+
backstory='With a keen eye for visual storytelling, you create compelling imagery that elevates the narrative and captivates the audience. You will ',
|
17 |
+
verbose=True,
|
18 |
+
llm=llm,
|
19 |
+
allow_delegation=False
|
20 |
+
)
|
21 |
+
|
22 |
+
# img_speech_generating_agent = Agent(
|
23 |
+
# role='Multimedia Content Creator',
|
24 |
+
# goal='Generate high-quality images and speeches for YouTube short videos one after another based on provided descriptions.',
|
25 |
+
# backstory='As a multimedia expert, you excel at creating engaging multimedia content that brings stories to life.',
|
26 |
+
# verbose=True,
|
27 |
+
# llm=llm,
|
28 |
+
# allow_delegation=False
|
29 |
+
# )
|
30 |
+
|
31 |
+
img_speech_generating_agent = Agent(
|
32 |
+
role='Multimedia Content Creator',
|
33 |
+
goal='Generate high-quality images and speeches for YouTube short videos based on provided script',
|
34 |
+
backstory='As a multimedia expert, you excel at creating engaging multimedia content that brings stories to life.',
|
35 |
+
verbose=True,
|
36 |
+
llm=llm,
|
37 |
+
allow_delegation=False
|
38 |
+
)
|
39 |
+
|
40 |
+
editor = Agent(
|
41 |
+
role = 'Video editor',
|
42 |
+
goal = 'To make a video for YouTube shorts.',
|
43 |
+
backstory = "You are a video editor working for a YouTube creator",
|
44 |
+
verbose=True,
|
45 |
+
llm=llm,
|
46 |
+
allow_delegation = False,
|
47 |
+
tools = [create_video_from_images_and_audio]
|
48 |
+
)
|
49 |
+
|
50 |
+
content_generation_task = Task(
|
51 |
+
description='Generate engaging and informative content on the topic: {topic}. Use the provided tool, only if you have no idea about the given topic.',
|
52 |
+
expected_output="""Good corpus of text about: {topic}""",
|
53 |
+
agent=script_agent,
|
54 |
+
tools = [wiki_tool]
|
55 |
+
)
|
56 |
+
|
57 |
+
story_writing_task = Task(
|
58 |
+
description='Write an engaging narration for a YouTube short video on the topic: {topic}',
|
59 |
+
expected_output="""A short paragraph suitable for narrating in five seconds that provides an immersive experience to the audience. Follow the below example for output length and format.
|
60 |
+
|
61 |
+
**Example input:**
|
62 |
+
Ancient Wonders of the World
|
63 |
+
|
64 |
+
**Output format:**
|
65 |
+
Embark on a journey through time and marvel at the ancient wonders of the world!
|
66 |
+
From the majestic Great Pyramid of Giza, symbolizing the ingenuity of ancient Egypt,
|
67 |
+
to the Hanging Gardens of Babylon, an oasis of lush beauty amidst ancient Mesopotamia's arid landscape.
|
68 |
+
These remarkable structures continue to intrigue and inspire awe, reminding us of humanity's enduring quest for greatness.
|
69 |
+
""",
|
70 |
+
agent=script_agent
|
71 |
+
)
|
72 |
+
|
73 |
+
|
74 |
+
img_text_task = Task(
|
75 |
+
description='Given the narration, visually describe each sentence in the narration which will be used as a prompt for image generation.',
|
76 |
+
expected_output="""Sentences encoded in <narration> and <image> tags. Follow the example below for the output format.
|
77 |
+
|
78 |
+
**Example input:**
|
79 |
+
Embark on a journey through time and marvel at the ancient wonders of the world! From the majestic Great Pyramid of Giza, symbolizing the ingenuity of ancient Egypt, to the Hanging Gardens of Babylon, an oasis of lush beauty amidst ancient Mesopotamia's arid landscape. These remarkable structures continue to intrigue and inspire awe, reminding us of humanity's enduring quest for greatness.
|
80 |
+
|
81 |
+
**Output format:**
|
82 |
+
|
83 |
+
<narration>Embark on a journey through time and marvel at the ancient wonders of the world!</narration>
|
84 |
+
<image>A breathtaking view of various ancient wonders, showcasing their grandeur and mystery.</image>
|
85 |
+
|
86 |
+
<narration>From the majestic Great Pyramid of Giza, symbolizing the ingenuity of ancient Egypt,</narration>
|
87 |
+
<image>The majestic Great Pyramid of Giza, standing tall against the desert backdrop, a testament to ancient engineering.</image>
|
88 |
+
|
89 |
+
<narration>to the Hanging Gardens of Babylon, an oasis of lush beauty amidst ancient Mesopotamia's arid landscape,</narration>
|
90 |
+
<image>The Hanging Gardens of Babylon, lush greenery cascading from terraced gardens, amidst the arid Mesopotamian landscape.</image>
|
91 |
+
|
92 |
+
<narration>These remarkable structures continue to intrigue and inspire awe, reminding us of humanity's enduring quest for greatness.</narration>
|
93 |
+
<image>Visitors captivated by the beauty and historical significance of these ancient marvels, exploring and marveling.</image>
|
94 |
+
""",
|
95 |
+
agent=image_descriptive_agent,
|
96 |
+
context=[story_writing_task]
|
97 |
+
)
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
# process_script_task = Task(
|
102 |
+
# description="Extract text for image and speech generation from a provided script.",
|
103 |
+
# expected_output="A dictionary containing lists of texts for image generation and speech generation.",
|
104 |
+
# agent=ScriptSynthesizer
|
105 |
+
# )
|
106 |
+
|
107 |
+
# img_generation_task = Task(
|
108 |
+
# description='Given the input generate images for sequence of sentence enclosed in <image> tag.',
|
109 |
+
# expected_output="""Acknowledgement of image generation""",
|
110 |
+
# tools = [image_generator],
|
111 |
+
# context = [img_text_task],
|
112 |
+
# # async_execution=True,
|
113 |
+
# agent=img_speech_generating_agent
|
114 |
+
# )
|
115 |
+
|
116 |
+
# speech_generation_task = Task(
|
117 |
+
# description='Given the input generate speech for each sentence enclosed in <narration> tag.',
|
118 |
+
# expected_output="""Acknowledgement of speech generation""",
|
119 |
+
# tools = [speech_generator],
|
120 |
+
# context = [img_text_task],
|
121 |
+
# # async_execution=True,
|
122 |
+
# agent=img_speech_generating_agent
|
123 |
+
# )
|
124 |
+
img_generation_task = Task(
|
125 |
+
description='Given the script, use the given tool to generate images',
|
126 |
+
expected_output="""Acknowledgement of image generation""",
|
127 |
+
tools = [image_generator],
|
128 |
+
context = [img_text_task],
|
129 |
+
# async_execution=True,
|
130 |
+
agent=img_speech_generating_agent
|
131 |
+
)
|
132 |
+
|
133 |
+
speech_generation_task = Task(
|
134 |
+
description='Given the script, use the given tool to generate speech',
|
135 |
+
expected_output="""Acknowledgement of speech generation""",
|
136 |
+
tools = [speech_generator],
|
137 |
+
context = [img_text_task],
|
138 |
+
# async_execution=True,
|
139 |
+
agent=img_speech_generating_agent
|
140 |
+
)
|
141 |
+
|
142 |
+
make_video_task = Task(
|
143 |
+
description = 'Create video using images and speeches from the forlders "outpus/images" and "outputs/speeches"',
|
144 |
+
expected_output = "output video path",
|
145 |
+
agent=editor,
|
146 |
+
context = [img_generation_task, speech_generation_task]
|
147 |
+
)
|
app.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
|
4 |
+
from crewai import Crew, Process
|
5 |
+
from agents import *
|
6 |
+
|
7 |
+
|
8 |
+
def generate_video(topic, grow_api_key, stability_ai_api_key):
|
9 |
+
os.environ['GROQ_API_KEY'] = grow_api_key
|
10 |
+
os.environ['STABILITY_AI_API_KEY'] = stability_ai_api_key
|
11 |
+
|
12 |
+
crew = Crew(
|
13 |
+
agents=[script_agent, image_descriptive_agent, img_speech_generating_agent, editor],
|
14 |
+
tasks=[content_generation_task, story_writing_task, img_text_task, img_generation_task,speech_generation_task,make_video_task],
|
15 |
+
process = Process.sequential,
|
16 |
+
# cache = True,
|
17 |
+
memory=True,
|
18 |
+
verbose=2
|
19 |
+
)
|
20 |
+
crew.kickoff(inputs={'topic': topic})
|
21 |
+
return os.path.join(os.path.dirname(os.path.abspath(__file__)), 'outputs/final_video/final_video.mp4')
|
22 |
+
|
23 |
+
app = gr.Interface(
|
24 |
+
fn=generate_video,
|
25 |
+
inputs=['text', 'text', 'text'],
|
26 |
+
# outputs=gr.Video(value=os.path.join('outputs/final_video/video.mp4'),label="Generated Video", width=720/2, height=1280/2),
|
27 |
+
outputs = gr.Video(format='mp4',label="Generated Video", width=720/2, height=1280/2),
|
28 |
+
title="ShortsIn",
|
29 |
+
description="Shorts generator"
|
30 |
+
)
|
31 |
+
|
32 |
+
app.launch(share=True)
|
33 |
+
#os.path.dirname(os.path.abspath(__file__))
|
tools.py
ADDED
@@ -0,0 +1,421 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.tools import tool, Tool
|
2 |
+
import re
|
3 |
+
import os
|
4 |
+
from langchain_groq import ChatGroq
|
5 |
+
import requests
|
6 |
+
import cv2
|
7 |
+
from moviepy.editor import ImageClip, AudioFileClip, concatenate_videoclips
|
8 |
+
from langchain.pydantic_v1 import BaseModel, Field
|
9 |
+
from langchain_community.tools import WikipediaQueryRun
|
10 |
+
from langchain_community.utilities import WikipediaAPIWrapper
|
11 |
+
|
12 |
+
# from diffusers import StableDiffusionXLPipeline, DPMSolverSinglestepScheduler
|
13 |
+
# import bitsandbytes as bnb
|
14 |
+
# import torch.nn as nn
|
15 |
+
# import torch
|
16 |
+
import pyttsx3
|
17 |
+
import os
|
18 |
+
# from langchain_google_genai import ChatGoogleGenerativeAI
|
19 |
+
|
20 |
+
# from langchain.chat_models import ChatOpenAI
|
21 |
+
# # llm2 = ChatOpenAI(model='gpt-3.5-turbo')
|
22 |
+
# # llm3 = ChatOpenAI(model='gpt-3.5-turbo')
|
23 |
+
# llm1 = ChatGroq(model='llama3-70b-8192', temperature=0.6, max_tokens=2048)
|
24 |
+
# # llm2 = ChatGroq(model='mixtral-8x7b-32768', temperature=0.6, max_tokens=2048, api_key='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')
|
25 |
+
# llm2 = ChatGoogleGenerativeAI(model='gemini-pro', temperature=0.0)
|
26 |
+
# # llm2 = ChatGroq(model='llama3-70b-8192', temperature=0.6, max_tokens=2048, api_key='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')
|
27 |
+
# # llm3 = ChatGoogleGenerativeAI(model='gemini-pro')
|
28 |
+
# llm4 = ChatGroq(model='llama3-70b-8192', temperature=0.6, max_tokens=2048, api_key='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')
|
29 |
+
llm = ChatGroq(model='llama3-70b-8192', temperature=0.6, max_tokens=1024, api_key=os.environ.get('GROQ_API_KEY'))
|
30 |
+
|
31 |
+
# pipe = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash", torch_dtype=torch.float16).to('cuda')
|
32 |
+
# pipe.scheduler = DPMSolverSinglestepScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
33 |
+
|
34 |
+
# def quantize_model_to_4bit(model):
|
35 |
+
# replacements = []
|
36 |
+
|
37 |
+
# # Collect layers to be replaced
|
38 |
+
# for name, module in model.named_modules():
|
39 |
+
# if isinstance(module, nn.Linear):
|
40 |
+
# replacements.append((name, module))
|
41 |
+
|
42 |
+
# # Replace layers
|
43 |
+
# for name, module in replacements:
|
44 |
+
# # Split the name to navigate to the parent module
|
45 |
+
# *path, last = name.split('.')
|
46 |
+
# parent = model
|
47 |
+
# for part in path:
|
48 |
+
# parent = getattr(parent, part)
|
49 |
+
|
50 |
+
# # Create and assign the quantized layer
|
51 |
+
# quantized_layer = bnb.nn.Linear4bit(module.in_features, module.out_features, bias=module.bias is not None)
|
52 |
+
# quantized_layer.weight.data = module.weight.data
|
53 |
+
# if module.bias is not None:
|
54 |
+
# quantized_layer.bias.data = module.bias.data
|
55 |
+
# setattr(parent, last, quantized_layer)
|
56 |
+
|
57 |
+
# return model
|
58 |
+
|
59 |
+
# pipe.unet = quantize_model_to_4bit(pipe.unet)
|
60 |
+
# pipe.enable_model_cpu_offload()
|
61 |
+
|
62 |
+
def generate_speech(text, speech_dir='./outputs/audio', lang='en', speed=170, voice='default', num=0):
|
63 |
+
"""
|
64 |
+
Generates speech for given script.
|
65 |
+
"""
|
66 |
+
engine = pyttsx3.init()
|
67 |
+
|
68 |
+
# Set language and voice
|
69 |
+
voices = engine.getProperty('voices')
|
70 |
+
if voice == 'default':
|
71 |
+
voice_id = voices[1].id
|
72 |
+
else:
|
73 |
+
# Try to find the voice with the given name
|
74 |
+
voice_id = None
|
75 |
+
for v in voices:
|
76 |
+
if voice in v.name:
|
77 |
+
voice_id = v.id
|
78 |
+
break
|
79 |
+
if not voice_id:
|
80 |
+
raise ValueError(f"Voice '{voice}' not found.")
|
81 |
+
|
82 |
+
engine.setProperty('voice', voice_id)
|
83 |
+
engine.setProperty('rate', speed)
|
84 |
+
os.remove(os.path.join(os.path.dirname(os.path.abspath(__file__)), speech_dir, f'speech_{num}.mp3')) if os.path.exists(os.path.join(speech_dir, f'speech_{num}.mp3')) else None
|
85 |
+
engine.save_to_file(text, os.path.join(os.path.dirname(os.path.abspath(__file__)), speech_dir, f'speech_{num}.mp3'))
|
86 |
+
engine.runAndWait()
|
87 |
+
|
88 |
+
# class VideoGeneration(BaseModel):
|
89 |
+
# images_dir : str = Field(description='Path to images directory, such as "outputs/images"')
|
90 |
+
# speeches_dir : str = Field(description='Path to speeches directory, such as "outputs/speeches"')
|
91 |
+
|
92 |
+
# @tool(args_schema=VideoGeneration)
|
93 |
+
# def create_video_from_images_and_audio(images_dir, speeches_dir, zoom_factor=1.2):
|
94 |
+
# """Creates video using images and audios with zoom-in effect"""
|
95 |
+
# images_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), images_dir)
|
96 |
+
# speeches_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), speeches_dir)
|
97 |
+
|
98 |
+
# images_paths = os.listdir(images_dir)
|
99 |
+
# audio_paths = os.listdir(speeches_dir)
|
100 |
+
# # print(images_paths, audio_paths)
|
101 |
+
# clips = []
|
102 |
+
|
103 |
+
# for i in range(min(len(images_paths), len(audio_paths))):
|
104 |
+
# # Load the image
|
105 |
+
# img_clip = ImageClip(os.path.join(images_dir, images_paths[i]))
|
106 |
+
|
107 |
+
# # Load the audio file
|
108 |
+
# audioclip = AudioFileClip(os.path.join(speeches_dir, audio_paths[i]))
|
109 |
+
|
110 |
+
# # Set the duration of the video clip to the duration of the audio file
|
111 |
+
# videoclip = img_clip.set_duration(audioclip.duration)
|
112 |
+
|
113 |
+
# # Apply zoom-in effect to the video clip
|
114 |
+
# zoomed_clip = apply_zoom_in_effect(videoclip, zoom_factor)
|
115 |
+
|
116 |
+
# # Add audio to the zoomed video clip
|
117 |
+
# zoomed_clip = zoomed_clip.set_audio(audioclip)
|
118 |
+
|
119 |
+
# clips.append(zoomed_clip)
|
120 |
+
|
121 |
+
# # Concatenate all video clips
|
122 |
+
# final_clip = concatenate_videoclips(clips)
|
123 |
+
|
124 |
+
# # Write the result to a file
|
125 |
+
# final_clip.write_videofile(os.path.join(os.path.dirname(os.path.abspath(__file__)), "outputs/final_video/final_video.mp4"), codec='libx264', fps=24)
|
126 |
+
|
127 |
+
# return os.path.join(os.path.dirname(os.path.abspath(__file__)), "outputs/final_video/final_video.mp4")
|
128 |
+
|
129 |
+
# def apply_zoom_in_effect(clip, zoom_factor=1.2):
|
130 |
+
# width, height = clip.size
|
131 |
+
# duration = clip.duration
|
132 |
+
|
133 |
+
# def zoom_in_effect(get_frame, t):
|
134 |
+
# frame = get_frame(t)
|
135 |
+
# zoom = 1 + (zoom_factor - 1) * (t / duration)
|
136 |
+
# new_width, new_height = int(width * zoom), int(height * zoom)
|
137 |
+
# resized_frame = cv2.resize(frame, (new_width, new_height))
|
138 |
+
|
139 |
+
# # Calculate the position to crop the frame to the original size
|
140 |
+
# x_start = (new_width - width) // 2
|
141 |
+
# y_start = (new_height - height) // 2
|
142 |
+
# cropped_frame = resized_frame[y_start:y_start + height, x_start:x_start + width]
|
143 |
+
|
144 |
+
# return cropped_frame
|
145 |
+
|
146 |
+
# return clip.fl(zoom_in_effect, apply_to=['mask'])
|
147 |
+
|
148 |
+
# Example usage
|
149 |
+
# image_paths = "outputs/images"
|
150 |
+
# audio_paths = "outputs/audio"
|
151 |
+
|
152 |
+
# video_path = create_video_from_images_and_audio(image_paths, audio_paths)
|
153 |
+
# print(f"Video created at: {video_path}")
|
154 |
+
|
155 |
+
|
156 |
+
# class ImageGeneration(BaseModel):
|
157 |
+
# text : str = Field(description='description of sentence used for image generation')
|
158 |
+
# num : int = Field(description='sequence of description passed this tool. Used in image saving path. Example 1,2,3,4,5 and so on')
|
159 |
+
|
160 |
+
# class SpeechGeneration(BaseModel):
|
161 |
+
# text : str = Field(description='description of sentence used for image generation')
|
162 |
+
# num : int = Field(description='sequence of description passed this tool. Used in image saving path. Example 1,2,3,4,5 and so on')
|
163 |
+
|
164 |
+
import os
|
165 |
+
import cv2
|
166 |
+
from moviepy.editor import ImageClip, AudioFileClip, concatenate_videoclips, VideoFileClip
|
167 |
+
from PIL import Image, ImageDraw, ImageFont
|
168 |
+
import numpy as np
|
169 |
+
from groq import Groq
|
170 |
+
|
171 |
+
client = Groq()
|
172 |
+
|
173 |
+
class VideoGeneration(BaseModel):
|
174 |
+
images_dir: str = Field(description='Path to images directory, such as "outputs/images"')
|
175 |
+
speeches_dir: str = Field(description='Path to speeches directory, such as "outputs/speeches"')
|
176 |
+
|
177 |
+
def split_text_into_chunks(text, chunk_size):
|
178 |
+
words = text.split()
|
179 |
+
return [' '.join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)]
|
180 |
+
|
181 |
+
def add_text_to_video(input_video, output_video, text, duration=1, fontsize=40, fontcolor=(255, 255, 255),
|
182 |
+
outline_thickness=2, outline_color=(0, 0, 0), delay_between_chunks=0.1,
|
183 |
+
font_path=os.path.join(os.path.dirname(os.path.abspath(__file__)),'Montserrat-Bold.ttf')):
|
184 |
+
|
185 |
+
chunks = split_text_into_chunks(text, 3) # Adjust chunk size as needed
|
186 |
+
|
187 |
+
cap = cv2.VideoCapture(input_video)
|
188 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
189 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
190 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
191 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
192 |
+
out = cv2.VideoWriter(output_video, fourcc, fps, (width, height))
|
193 |
+
|
194 |
+
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
195 |
+
chunk_duration_frames = duration * fps
|
196 |
+
delay_frames = int(delay_between_chunks * fps)
|
197 |
+
|
198 |
+
font = ImageFont.truetype(font_path, fontsize)
|
199 |
+
|
200 |
+
current_frame = 0
|
201 |
+
|
202 |
+
while cap.isOpened():
|
203 |
+
ret, frame = cap.read()
|
204 |
+
if not ret:
|
205 |
+
break
|
206 |
+
|
207 |
+
frame_pil = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
208 |
+
draw = ImageDraw.Draw(frame_pil)
|
209 |
+
|
210 |
+
chunk_index = current_frame // (chunk_duration_frames + delay_frames)
|
211 |
+
|
212 |
+
if current_frame % (chunk_duration_frames + delay_frames) < chunk_duration_frames and chunk_index < len(chunks):
|
213 |
+
chunk = chunks[chunk_index]
|
214 |
+
text_width, text_height = draw.textsize(chunk, font=font)
|
215 |
+
text_x = (width - text_width) // 2
|
216 |
+
text_y = height - 400 # Position text at the bottom
|
217 |
+
|
218 |
+
if text_width > width:
|
219 |
+
words = chunk.split()
|
220 |
+
half = len(words) // 2
|
221 |
+
line1 = ' '.join(words[:half])
|
222 |
+
line2 = ' '.join(words[half:])
|
223 |
+
|
224 |
+
text_size_line1 = draw.textsize(line1, font=font)
|
225 |
+
text_size_line2 = draw.textsize(line2, font=font)
|
226 |
+
text_x_line1 = (width - text_size_line1[0]) // 2
|
227 |
+
text_x_line2 = (width - text_size_line2[0]) // 2
|
228 |
+
text_y = height - 250 - text_size_line1[1] # Adjust vertical position for two lines
|
229 |
+
|
230 |
+
for dx in range(-outline_thickness, outline_thickness + 1):
|
231 |
+
for dy in range(-outline_thickness, outline_thickness + 1):
|
232 |
+
if dx != 0 or dy != 0:
|
233 |
+
draw.text((text_x_line1 + dx, text_y + dy), line1, font=font, fill=outline_color)
|
234 |
+
draw.text((text_x_line2 + dx, text_y + text_size_line1[1] + dy), line2, font=font, fill=outline_color)
|
235 |
+
|
236 |
+
draw.text((text_x_line1, text_y), line1, font=font, fill=fontcolor)
|
237 |
+
draw.text((text_x_line2, text_y + text_size_line1[1]), line2, font=font, fill=fontcolor)
|
238 |
+
|
239 |
+
else:
|
240 |
+
for dx in range(-outline_thickness, outline_thickness + 1):
|
241 |
+
for dy in range(-outline_thickness, outline_thickness + 1):
|
242 |
+
if dx != 0 or dy != 0:
|
243 |
+
draw.text((text_x + dx, text_y + dy), chunk, font=font, fill=outline_color)
|
244 |
+
|
245 |
+
draw.text((text_x, text_y), chunk, font=font, fill=fontcolor)
|
246 |
+
|
247 |
+
frame = cv2.cvtColor(np.array(frame_pil), cv2.COLOR_RGB2BGR)
|
248 |
+
|
249 |
+
out.write(frame)
|
250 |
+
current_frame += 1
|
251 |
+
|
252 |
+
cap.release()
|
253 |
+
out.release()
|
254 |
+
cv2.destroyAllWindows()
|
255 |
+
|
256 |
+
def apply_zoom_in_effect(clip, zoom_factor=1.2):
|
257 |
+
width, height = clip.size
|
258 |
+
duration = clip.duration
|
259 |
+
|
260 |
+
def zoom_in_effect(get_frame, t):
|
261 |
+
frame = get_frame(t)
|
262 |
+
zoom = 1 + (zoom_factor - 1) * (t / duration)
|
263 |
+
new_width, new_height = int(width * zoom), int(height * zoom)
|
264 |
+
resized_frame = cv2.resize(frame, (new_width, new_height))
|
265 |
+
|
266 |
+
x_start = (new_width - width) // 2
|
267 |
+
y_start = (new_height - height) // 2
|
268 |
+
cropped_frame = resized_frame[y_start:y_start + height, x_start:x_start + width]
|
269 |
+
|
270 |
+
return cropped_frame
|
271 |
+
|
272 |
+
return clip.fl(zoom_in_effect, apply_to=['mask'])
|
273 |
+
|
274 |
+
@tool(args_schema=VideoGeneration)
|
275 |
+
def create_video_from_images_and_audio(images_dir, speeches_dir, zoom_factor=1.2):
|
276 |
+
"""Creates video using images and audios.
|
277 |
+
Args:
|
278 |
+
images_dir: path to images folder, example 'outputs/images'
|
279 |
+
speeches_dir: path to speeches folder, example 'outputs/speeches'"""
|
280 |
+
images_paths = sorted(os.listdir(os.path.join(os.path.dirname(os.path.abspath(__file__)),images_dir)))
|
281 |
+
audio_paths = sorted(os.listdir(os.path.join(os.path.dirname(os.path.abspath(__file__)),speeches_dir)))
|
282 |
+
clips = []
|
283 |
+
temp_files = []
|
284 |
+
|
285 |
+
for i in range(min(len(images_paths), len(audio_paths))):
|
286 |
+
img_clip = ImageClip(os.path.join(os.path.dirname(os.path.abspath(__file__)),images_dir, images_paths[i]))
|
287 |
+
audioclip = AudioFileClip(os.path.join(os.path.dirname(os.path.abspath(__file__)),speeches_dir, audio_paths[i]))
|
288 |
+
videoclip = img_clip.set_duration(audioclip.duration)
|
289 |
+
zoomed_clip = apply_zoom_in_effect(videoclip, zoom_factor)
|
290 |
+
|
291 |
+
with open(os.path.join(os.path.dirname(os.path.abspath(__file__)),speeches_dir, audio_paths[i]), "rb") as file:
|
292 |
+
transcription = client.audio.transcriptions.create(
|
293 |
+
file=(audio_paths[i], file.read()),
|
294 |
+
model="whisper-large-v3",
|
295 |
+
response_format="verbose_json",
|
296 |
+
)
|
297 |
+
caption = transcription.text
|
298 |
+
|
299 |
+
temp_video_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), f"outputs/final_video/temp_zoomed_{i}.mp4")
|
300 |
+
zoomed_clip.write_videofile(temp_video_path, codec='libx264', fps=24)
|
301 |
+
temp_files.append(temp_video_path)
|
302 |
+
|
303 |
+
final_video_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), f"outputs/final_video/temp_captioned_{i}.mp4")
|
304 |
+
add_text_to_video(temp_video_path, final_video_path, caption, duration=1, fontsize=60)
|
305 |
+
temp_files.append(final_video_path)
|
306 |
+
|
307 |
+
final_clip = VideoFileClip(final_video_path)
|
308 |
+
final_clip = final_clip.set_audio(audioclip)
|
309 |
+
|
310 |
+
clips.append(final_clip)
|
311 |
+
|
312 |
+
final_clip = concatenate_videoclips(clips)
|
313 |
+
final_clip.write_videofile(os.path.join(os.path.dirname(os.path.abspath(__file__)), "outputs/final_video/final_video.mp4"), codec='libx264', fps=24)
|
314 |
+
|
315 |
+
# Close all video files properly
|
316 |
+
for clip in clips:
|
317 |
+
clip.close()
|
318 |
+
|
319 |
+
# Remove all temporary files
|
320 |
+
for temp_file in temp_files:
|
321 |
+
try:
|
322 |
+
os.remove(temp_file)
|
323 |
+
except Exception as e:
|
324 |
+
print(f"Error removing file {temp_file}: {e}")
|
325 |
+
|
326 |
+
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "outputs/final_video/final_video.mp4")
|
327 |
+
|
328 |
+
# Example usage
|
329 |
+
# image_paths = "outputs/images"
|
330 |
+
# audio_paths = "outputs/speeches"
|
331 |
+
|
332 |
+
# video_path = create_video_from_images_and_audio(image_paths, audio_paths)
|
333 |
+
# print(f"Video created at: {video_path}")
|
334 |
+
|
335 |
+
class WikiInputs(BaseModel):
|
336 |
+
"""Inputs to the wikipedia tool."""
|
337 |
+
query: str = Field(description="query to look up in Wikipedia, should be 3 or less words")
|
338 |
+
|
339 |
+
api_wrapper = WikipediaAPIWrapper(top_k_results=3)#, doc_content_chars_max=100)
|
340 |
+
|
341 |
+
wiki_tool = WikipediaQueryRun(
|
342 |
+
name="wiki-tool",
|
343 |
+
description="{query:'input here'}",
|
344 |
+
args_schema=WikiInputs,
|
345 |
+
api_wrapper=api_wrapper,
|
346 |
+
return_direct=True,
|
347 |
+
)
|
348 |
+
|
349 |
+
wiki = Tool(
|
350 |
+
name = 'wikipedia',
|
351 |
+
func = wiki_tool.run,
|
352 |
+
description= "{query:'input here'}"
|
353 |
+
)
|
354 |
+
|
355 |
+
# wiki_tool.run("latest news in India")
|
356 |
+
|
357 |
+
# @tool
|
358 |
+
def process_script(script):
|
359 |
+
"""Used to process the script into dictionary format"""
|
360 |
+
dict = {}
|
361 |
+
dict['text_for_image_generation'] = re.findall(r'<image>(.*?)</?image>', script)
|
362 |
+
dict['text_for_speech_generation'] = re.findall(r'<narration>.*?</?narration>', script)
|
363 |
+
return dict
|
364 |
+
|
365 |
+
@tool#(args_schema=ImageGeneration)
|
366 |
+
def image_generator(script):
|
367 |
+
"""Generates images for the given script.
|
368 |
+
Saves it to images_dir and return path
|
369 |
+
Args:
|
370 |
+
script: a complete script containing narrations and image descriptions"""
|
371 |
+
images_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), './outputs/images')
|
372 |
+
# if num==1:
|
373 |
+
for filename in os.listdir(images_dir):
|
374 |
+
file_path = os.path.join(images_dir, filename)
|
375 |
+
if os.path.isfile(file_path):
|
376 |
+
os.remove(file_path)
|
377 |
+
|
378 |
+
dict = process_script(script)
|
379 |
+
for i, text in enumerate(dict['text_for_image_generation']):
|
380 |
+
# image = pipe(text, num_inference_steps=12, guidance_scale=2, width=720, height=1280, verbose=0).images[0]
|
381 |
+
# image.save(os.path.join(images_dir, f'image{i}.jpg'))
|
382 |
+
response = requests.post(
|
383 |
+
f"https://api.stability.ai/v2beta/stable-image/generate/core",
|
384 |
+
headers={
|
385 |
+
"authorization": os.environ.get('STABILITY_AI_API_KEY'),
|
386 |
+
"accept": "image/*"
|
387 |
+
},
|
388 |
+
files={"none": ''},
|
389 |
+
data={
|
390 |
+
"prompt": text,
|
391 |
+
"output_format": "png",
|
392 |
+
'aspect_ratio': "9:16",
|
393 |
+
},
|
394 |
+
)
|
395 |
+
|
396 |
+
if response.status_code == 200:
|
397 |
+
with open(os.path.join(images_dir, f'image_{i}.png'), 'wb') as file:
|
398 |
+
file.write(response.content)
|
399 |
+
else:
|
400 |
+
raise Exception(str(response.json()))
|
401 |
+
return f'images generated.'#f'image generated for "{text}" and saved to directory {images_dir} as image{num}.jpg'
|
402 |
+
|
403 |
+
@tool
|
404 |
+
def speech_generator(script):
|
405 |
+
"""Generates speech for given text
|
406 |
+
Saves it to speech_dir and return path
|
407 |
+
Args:
|
408 |
+
script: a complete script containing narrations and image descriptions"""
|
409 |
+
speech_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), './outputs/speeches')
|
410 |
+
|
411 |
+
# if num==1:
|
412 |
+
for filename in os.listdir(speech_dir):
|
413 |
+
file_path = os.path.join(speech_dir, filename)
|
414 |
+
if os.path.isfile(file_path):
|
415 |
+
os.remove(file_path)
|
416 |
+
|
417 |
+
dict = process_script(script)
|
418 |
+
print(dict)
|
419 |
+
for i, text in enumerate(dict['text_for_speech_generation']):
|
420 |
+
generate_speech(text, speech_dir, num=i)
|
421 |
+
return f'speechs generated.'#f'speech generated for "{text}" and saved to directory {speech_dir} as speech{num}.mp3'
|