Spaces:
Sleeping
Sleeping
PunGrumpy
commited on
Commit
·
a07e90e
1
Parent(s):
4e79682
✨ feature: redirect on `/` to `/docs`
Browse files- .gitignore +6 -0
- app.py +15 -12
- requirements.txt +1 -0
.gitignore
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Environment
|
2 |
+
.venv
|
3 |
+
.env
|
4 |
+
|
5 |
+
# Cache
|
6 |
+
__pycache__/
|
app.py
CHANGED
@@ -1,28 +1,31 @@
|
|
1 |
from fastapi import FastAPI
|
|
|
2 |
from transformers import pipeline
|
3 |
-
|
4 |
# Create a new FastAPI app instance
|
5 |
app = FastAPI()
|
6 |
-
|
7 |
# Initialize the text generation pipeline
|
8 |
# This function will be able to generate text
|
9 |
# given an input.
|
10 |
-
pipe = pipeline("text2text-generation",
|
11 |
-
|
12 |
-
|
13 |
-
# Define a function to handle the GET request at `/generate`
|
14 |
-
# The generate() function is defined as a FastAPI route that takes a
|
15 |
-
# string parameter called text. The function generates text based on the # input using the pipeline() object, and returns a JSON response
|
16 |
-
# containing the generated text under the key "output"
|
17 |
@app.get("/")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
def generate(text: str):
|
19 |
"""
|
20 |
Using the text2text-generation pipeline from `transformers`, generate text
|
21 |
from the given input text. The model used is `google/flan-t5-small`, which
|
22 |
can be found [here](<https://huggingface.co/google/flan-t5-small>).
|
23 |
"""
|
24 |
-
# Use the pipeline to generate text from the given input text
|
25 |
output = pipe(text)
|
26 |
-
|
27 |
-
# Return the generated text in a JSON response
|
28 |
return {"output": output[0]["generated_text"]}
|
|
|
1 |
from fastapi import FastAPI
|
2 |
+
from fastapi.responses import RedirectResponse
|
3 |
from transformers import pipeline
|
4 |
+
|
5 |
# Create a new FastAPI app instance
|
6 |
app = FastAPI()
|
7 |
+
|
8 |
# Initialize the text generation pipeline
|
9 |
# This function will be able to generate text
|
10 |
# given an input.
|
11 |
+
pipe = pipeline("text2text-generation", model="google/flan-t5-small")
|
12 |
+
|
13 |
+
|
|
|
|
|
|
|
|
|
14 |
@app.get("/")
|
15 |
+
def index():
|
16 |
+
"""
|
17 |
+
Documentation for the API.
|
18 |
+
"""
|
19 |
+
return RedirectResponse(url="/docs")
|
20 |
+
|
21 |
+
|
22 |
+
@app.get("/generate")
|
23 |
def generate(text: str):
|
24 |
"""
|
25 |
Using the text2text-generation pipeline from `transformers`, generate text
|
26 |
from the given input text. The model used is `google/flan-t5-small`, which
|
27 |
can be found [here](<https://huggingface.co/google/flan-t5-small>).
|
28 |
"""
|
|
|
29 |
output = pipe(text)
|
30 |
+
|
|
|
31 |
return {"output": output[0]["generated_text"]}
|
requirements.txt
CHANGED
@@ -3,4 +3,5 @@ requests==2.27.*
|
|
3 |
uvicorn[standard]==0.17.*
|
4 |
sentencepiece==0.1.*
|
5 |
torch==1.11.*
|
|
|
6 |
transformers==4.*
|
|
|
3 |
uvicorn[standard]==0.17.*
|
4 |
sentencepiece==0.1.*
|
5 |
torch==1.11.*
|
6 |
+
# torch==2.1.*
|
7 |
transformers==4.*
|