Spaces:
Running
Running
Commit
·
8c51cde
1
Parent(s):
8bf2435
Delete web_app.py
Browse files- web_app.py +0 -402
web_app.py
DELETED
@@ -1,402 +0,0 @@
|
|
1 |
-
from fastai.vision.models.unet import DynamicUnet
|
2 |
-
from torchvision.models.resnet import resnet18
|
3 |
-
from fastai.vision.learner import create_body
|
4 |
-
import streamlit as st
|
5 |
-
from PIL import Image
|
6 |
-
import cv2 as cv
|
7 |
-
import os
|
8 |
-
import glob
|
9 |
-
import time
|
10 |
-
import numpy as np
|
11 |
-
from PIL import Image
|
12 |
-
from pathlib import Path
|
13 |
-
from tqdm.notebook import tqdm
|
14 |
-
import matplotlib.pyplot as plt
|
15 |
-
from skimage.color import rgb2lab, lab2rgb
|
16 |
-
|
17 |
-
# pip install fastai==2.4
|
18 |
-
|
19 |
-
import torch
|
20 |
-
from torch import nn, optim
|
21 |
-
from torchvision import transforms
|
22 |
-
from torchvision.utils import make_grid
|
23 |
-
from torch.utils.data import Dataset, DataLoader
|
24 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
25 |
-
use_colab = None
|
26 |
-
|
27 |
-
SIZE = 256
|
28 |
-
|
29 |
-
|
30 |
-
class ColorizationDataset(Dataset):
|
31 |
-
def __init__(self, paths, split='train'):
|
32 |
-
if split == 'train':
|
33 |
-
self.transforms = transforms.Compose([
|
34 |
-
transforms.Resize((SIZE, SIZE), Image.BICUBIC),
|
35 |
-
transforms.RandomHorizontalFlip(), # A little data augmentation!
|
36 |
-
])
|
37 |
-
elif split == 'val':
|
38 |
-
self.transforms = transforms.Resize((SIZE, SIZE), Image.BICUBIC)
|
39 |
-
|
40 |
-
self.split = split
|
41 |
-
self.size = SIZE
|
42 |
-
self.paths = paths
|
43 |
-
|
44 |
-
def __getitem__(self, idx):
|
45 |
-
img = Image.open(self.paths[idx]).convert("RGB")
|
46 |
-
img = self.transforms(img)
|
47 |
-
img = np.array(img)
|
48 |
-
img_lab = rgb2lab(img).astype("float32") # Converting RGB to L*a*b
|
49 |
-
img_lab = transforms.ToTensor()(img_lab)
|
50 |
-
L = img_lab[[0], ...] / 50. - 1. # Between -1 and 1
|
51 |
-
ab = img_lab[[1, 2], ...] / 110. # Between -1 and 1
|
52 |
-
|
53 |
-
return {'L': L, 'ab': ab}
|
54 |
-
|
55 |
-
def __len__(self):
|
56 |
-
return len(self.paths)
|
57 |
-
|
58 |
-
def make_dataloaders(batch_size=16, n_workers=4, pin_memory=True, **kwargs):
|
59 |
-
dataset = ColorizationDataset(**kwargs)
|
60 |
-
dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=n_workers,
|
61 |
-
pin_memory=pin_memory)
|
62 |
-
return dataloader
|
63 |
-
|
64 |
-
|
65 |
-
class UnetBlock(nn.Module):
|
66 |
-
def __init__(self, nf, ni, submodule=None, input_c=None, dropout=False,
|
67 |
-
innermost=False, outermost=False):
|
68 |
-
super().__init__()
|
69 |
-
self.outermost = outermost
|
70 |
-
if input_c is None:
|
71 |
-
input_c = nf
|
72 |
-
downconv = nn.Conv2d(input_c, ni, kernel_size=4,
|
73 |
-
stride=2, padding=1, bias=False)
|
74 |
-
downrelu = nn.LeakyReLU(0.2, True)
|
75 |
-
downnorm = nn.BatchNorm2d(ni)
|
76 |
-
uprelu = nn.ReLU(True)
|
77 |
-
upnorm = nn.BatchNorm2d(nf)
|
78 |
-
|
79 |
-
if outermost:
|
80 |
-
upconv = nn.ConvTranspose2d(ni * 2, nf, kernel_size=4,
|
81 |
-
stride=2, padding=1)
|
82 |
-
down = [downconv]
|
83 |
-
up = [uprelu, upconv, nn.Tanh()]
|
84 |
-
model = down + [submodule] + up
|
85 |
-
elif innermost:
|
86 |
-
upconv = nn.ConvTranspose2d(ni, nf, kernel_size=4,
|
87 |
-
stride=2, padding=1, bias=False)
|
88 |
-
down = [downrelu, downconv]
|
89 |
-
up = [uprelu, upconv, upnorm]
|
90 |
-
model = down + up
|
91 |
-
else:
|
92 |
-
upconv = nn.ConvTranspose2d(ni * 2, nf, kernel_size=4,
|
93 |
-
stride=2, padding=1, bias=False)
|
94 |
-
down = [downrelu, downconv, downnorm]
|
95 |
-
up = [uprelu, upconv, upnorm]
|
96 |
-
if dropout:
|
97 |
-
up += [nn.Dropout(0.5)]
|
98 |
-
model = down + [submodule] + up
|
99 |
-
self.model = nn.Sequential(*model)
|
100 |
-
|
101 |
-
def forward(self, x):
|
102 |
-
if self.outermost:
|
103 |
-
return self.model(x)
|
104 |
-
else:
|
105 |
-
return torch.cat([x, self.model(x)], 1)
|
106 |
-
|
107 |
-
|
108 |
-
class Unet(nn.Module):
|
109 |
-
def __init__(self, input_c=1, output_c=2, n_down=8, num_filters=64):
|
110 |
-
super().__init__()
|
111 |
-
unet_block = UnetBlock(
|
112 |
-
num_filters * 8, num_filters * 8, innermost=True)
|
113 |
-
for _ in range(n_down - 5):
|
114 |
-
unet_block = UnetBlock(
|
115 |
-
num_filters * 8, num_filters * 8, submodule=unet_block, dropout=True)
|
116 |
-
out_filters = num_filters * 8
|
117 |
-
for _ in range(3):
|
118 |
-
unet_block = UnetBlock(
|
119 |
-
out_filters // 2, out_filters, submodule=unet_block)
|
120 |
-
out_filters //= 2
|
121 |
-
self.model = UnetBlock(
|
122 |
-
output_c, out_filters, input_c=input_c, submodule=unet_block, outermost=True)
|
123 |
-
|
124 |
-
def forward(self, x):
|
125 |
-
return self.model(x)
|
126 |
-
|
127 |
-
|
128 |
-
class PatchDiscriminator(nn.Module):
|
129 |
-
def __init__(self, input_c, num_filters=64, n_down=3):
|
130 |
-
super().__init__()
|
131 |
-
model = [self.get_layers(input_c, num_filters, norm=False)]
|
132 |
-
model += [self.get_layers(num_filters * 2 ** i, num_filters * 2 ** (i + 1), s=1 if i == (n_down-1) else 2)
|
133 |
-
for i in range(n_down)] # the 'if' statement is taking care of not using
|
134 |
-
# stride of 2 for the last block in this loop
|
135 |
-
# Make sure to not use normalization or
|
136 |
-
model += [self.get_layers(num_filters * 2 **
|
137 |
-
n_down, 1, s=1, norm=False, act=False)]
|
138 |
-
# activation for the last layer of the model
|
139 |
-
self.model = nn.Sequential(*model)
|
140 |
-
|
141 |
-
# when needing to make some repeatitive blocks of layers,
|
142 |
-
def get_layers(self, ni, nf, k=4, s=2, p=1, norm=True, act=True):
|
143 |
-
# it's always helpful to make a separate method for that purpose
|
144 |
-
layers = [nn.Conv2d(ni, nf, k, s, p, bias=not norm)]
|
145 |
-
if norm:
|
146 |
-
layers += [nn.BatchNorm2d(nf)]
|
147 |
-
if act:
|
148 |
-
layers += [nn.LeakyReLU(0.2, True)]
|
149 |
-
return nn.Sequential(*layers)
|
150 |
-
|
151 |
-
def forward(self, x):
|
152 |
-
return self.model(x)
|
153 |
-
|
154 |
-
|
155 |
-
class GANLoss(nn.Module):
|
156 |
-
def __init__(self, gan_mode='vanilla', real_label=1.0, fake_label=0.0):
|
157 |
-
super().__init__()
|
158 |
-
self.register_buffer('real_label', torch.tensor(real_label))
|
159 |
-
self.register_buffer('fake_label', torch.tensor(fake_label))
|
160 |
-
if gan_mode == 'vanilla':
|
161 |
-
self.loss = nn.BCEWithLogitsLoss()
|
162 |
-
elif gan_mode == 'lsgan':
|
163 |
-
self.loss = nn.MSELoss()
|
164 |
-
|
165 |
-
def get_labels(self, preds, target_is_real):
|
166 |
-
if target_is_real:
|
167 |
-
labels = self.real_label
|
168 |
-
else:
|
169 |
-
labels = self.fake_label
|
170 |
-
return labels.expand_as(preds)
|
171 |
-
|
172 |
-
def __call__(self, preds, target_is_real):
|
173 |
-
labels = self.get_labels(preds, target_is_real)
|
174 |
-
loss = self.loss(preds, labels)
|
175 |
-
return loss
|
176 |
-
|
177 |
-
|
178 |
-
def init_weights(net, init='norm', gain=0.02):
|
179 |
-
|
180 |
-
def init_func(m):
|
181 |
-
classname = m.__class__.__name__
|
182 |
-
if hasattr(m, 'weight') and 'Conv' in classname:
|
183 |
-
if init == 'norm':
|
184 |
-
nn.init.normal_(m.weight.data, mean=0.0, std=gain)
|
185 |
-
elif init == 'xavier':
|
186 |
-
nn.init.xavier_normal_(m.weight.data, gain=gain)
|
187 |
-
elif init == 'kaiming':
|
188 |
-
nn.init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
|
189 |
-
|
190 |
-
if hasattr(m, 'bias') and m.bias is not None:
|
191 |
-
nn.init.constant_(m.bias.data, 0.0)
|
192 |
-
elif 'BatchNorm2d' in classname:
|
193 |
-
nn.init.normal_(m.weight.data, 1., gain)
|
194 |
-
nn.init.constant_(m.bias.data, 0.)
|
195 |
-
|
196 |
-
net.apply(init_func)
|
197 |
-
print(f"model initialized with {init} initialization")
|
198 |
-
return net
|
199 |
-
|
200 |
-
|
201 |
-
def init_model(model, device):
|
202 |
-
model = model.to(device)
|
203 |
-
model = init_weights(model)
|
204 |
-
return model
|
205 |
-
|
206 |
-
|
207 |
-
class MainModel(nn.Module):
|
208 |
-
def __init__(self, net_G=None, lr_G=2e-4, lr_D=2e-4,
|
209 |
-
beta1=0.5, beta2=0.999, lambda_L1=100.):
|
210 |
-
super().__init__()
|
211 |
-
|
212 |
-
self.device = torch.device(
|
213 |
-
"cuda" if torch.cuda.is_available() else "cpu")
|
214 |
-
self.lambda_L1 = lambda_L1
|
215 |
-
|
216 |
-
if net_G is None:
|
217 |
-
self.net_G = init_model(
|
218 |
-
Unet(input_c=1, output_c=2, n_down=8, num_filters=64), self.device)
|
219 |
-
else:
|
220 |
-
self.net_G = net_G.to(self.device)
|
221 |
-
self.net_D = init_model(PatchDiscriminator(
|
222 |
-
input_c=3, n_down=3, num_filters=64), self.device)
|
223 |
-
self.GANcriterion = GANLoss(gan_mode='vanilla').to(self.device)
|
224 |
-
self.L1criterion = nn.L1Loss()
|
225 |
-
self.opt_G = optim.Adam(self.net_G.parameters(),
|
226 |
-
lr=lr_G, betas=(beta1, beta2))
|
227 |
-
self.opt_D = optim.Adam(self.net_D.parameters(),
|
228 |
-
lr=lr_D, betas=(beta1, beta2))
|
229 |
-
|
230 |
-
def set_requires_grad(self, model, requires_grad=True):
|
231 |
-
for p in model.parameters():
|
232 |
-
p.requires_grad = requires_grad
|
233 |
-
|
234 |
-
def setup_input(self, data):
|
235 |
-
self.L = data['L'].to(self.device)
|
236 |
-
self.ab = data['ab'].to(self.device)
|
237 |
-
|
238 |
-
def forward(self):
|
239 |
-
self.fake_color = self.net_G(self.L)
|
240 |
-
|
241 |
-
def backward_D(self):
|
242 |
-
fake_image = torch.cat([self.L, self.fake_color], dim=1)
|
243 |
-
fake_preds = self.net_D(fake_image.detach())
|
244 |
-
self.loss_D_fake = self.GANcriterion(fake_preds, False)
|
245 |
-
real_image = torch.cat([self.L, self.ab], dim=1)
|
246 |
-
real_preds = self.net_D(real_image)
|
247 |
-
self.loss_D_real = self.GANcriterion(real_preds, True)
|
248 |
-
self.loss_D = (self.loss_D_fake + self.loss_D_real) * 0.5
|
249 |
-
self.loss_D.backward()
|
250 |
-
|
251 |
-
def backward_G(self):
|
252 |
-
fake_image = torch.cat([self.L, self.fake_color], dim=1)
|
253 |
-
fake_preds = self.net_D(fake_image)
|
254 |
-
self.loss_G_GAN = self.GANcriterion(fake_preds, True)
|
255 |
-
self.loss_G_L1 = self.L1criterion(
|
256 |
-
self.fake_color, self.ab) * self.lambda_L1
|
257 |
-
self.loss_G = self.loss_G_GAN + self.loss_G_L1
|
258 |
-
self.loss_G.backward()
|
259 |
-
|
260 |
-
def optimize(self):
|
261 |
-
self.forward()
|
262 |
-
self.net_D.train()
|
263 |
-
self.set_requires_grad(self.net_D, True)
|
264 |
-
self.opt_D.zero_grad()
|
265 |
-
self.backward_D()
|
266 |
-
self.opt_D.step()
|
267 |
-
|
268 |
-
self.net_G.train()
|
269 |
-
self.set_requires_grad(self.net_D, False)
|
270 |
-
self.opt_G.zero_grad()
|
271 |
-
self.backward_G()
|
272 |
-
self.opt_G.step()
|
273 |
-
|
274 |
-
|
275 |
-
class AverageMeter:
|
276 |
-
def __init__(self):
|
277 |
-
self.reset()
|
278 |
-
|
279 |
-
def reset(self):
|
280 |
-
self.count, self.avg, self.sum = [0.] * 3
|
281 |
-
|
282 |
-
def update(self, val, count=1):
|
283 |
-
self.count += count
|
284 |
-
self.sum += count * val
|
285 |
-
self.avg = self.sum / self.count
|
286 |
-
|
287 |
-
|
288 |
-
def create_loss_meters():
|
289 |
-
loss_D_fake = AverageMeter()
|
290 |
-
loss_D_real = AverageMeter()
|
291 |
-
loss_D = AverageMeter()
|
292 |
-
loss_G_GAN = AverageMeter()
|
293 |
-
loss_G_L1 = AverageMeter()
|
294 |
-
loss_G = AverageMeter()
|
295 |
-
|
296 |
-
return {'loss_D_fake': loss_D_fake,
|
297 |
-
'loss_D_real': loss_D_real,
|
298 |
-
'loss_D': loss_D,
|
299 |
-
'loss_G_GAN': loss_G_GAN,
|
300 |
-
'loss_G_L1': loss_G_L1,
|
301 |
-
'loss_G': loss_G}
|
302 |
-
|
303 |
-
|
304 |
-
def update_losses(model, loss_meter_dict, count):
|
305 |
-
for loss_name, loss_meter in loss_meter_dict.items():
|
306 |
-
loss = getattr(model, loss_name)
|
307 |
-
loss_meter.update(loss.item(), count=count)
|
308 |
-
|
309 |
-
|
310 |
-
def lab_to_rgb(L, ab):
|
311 |
-
L = (L + 1.) * 50.
|
312 |
-
ab = ab * 110.
|
313 |
-
Lab = torch.cat([L, ab], dim=1).permute(0, 2, 3, 1).cpu().numpy()
|
314 |
-
rgb_imgs = []
|
315 |
-
for img in Lab:
|
316 |
-
img_rgb = lab2rgb(img)
|
317 |
-
rgb_imgs.append(img_rgb)
|
318 |
-
return np.stack(rgb_imgs, axis=0)
|
319 |
-
|
320 |
-
|
321 |
-
def visualize(model, data, dims):
|
322 |
-
model.net_G.eval()
|
323 |
-
with torch.no_grad():
|
324 |
-
model.setup_input(data)
|
325 |
-
model.forward()
|
326 |
-
model.net_G.train()
|
327 |
-
fake_color = model.fake_color.detach()
|
328 |
-
real_color = model.ab
|
329 |
-
L = model.L
|
330 |
-
fake_imgs = lab_to_rgb(L, fake_color)
|
331 |
-
real_imgs = lab_to_rgb(L, real_color)
|
332 |
-
for i in range(1):
|
333 |
-
# t_img = transforms.Resize((dims[0], dims[1]))(t_img)
|
334 |
-
img = Image.fromarray(np.uint8(fake_imgs[i]))
|
335 |
-
img = cv.resize(fake_imgs[i], dsize=(
|
336 |
-
dims[1], dims[0]), interpolation=cv.INTER_CUBIC)
|
337 |
-
# st.text(f"Size of fake image {fake_imgs[i].shape} \n Type of image = {type(fake_imgs[i])}")
|
338 |
-
st.image(img, caption="Output image",
|
339 |
-
use_column_width='auto', clamp=True)
|
340 |
-
|
341 |
-
|
342 |
-
def log_results(loss_meter_dict):
|
343 |
-
for loss_name, loss_meter in loss_meter_dict.items():
|
344 |
-
print(f"{loss_name}: {loss_meter.avg:.5f}")
|
345 |
-
|
346 |
-
def build_res_unet(n_input=1, n_output=2, size=256):
|
347 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
348 |
-
body = create_body(resnet18(), pretrained=True, n_in=n_input, cut=-2)
|
349 |
-
net_G = DynamicUnet(body, n_output, (size, size)).to(device)
|
350 |
-
return net_G
|
351 |
-
|
352 |
-
|
353 |
-
net_G = build_res_unet(n_input=1, n_output=2, size=256)
|
354 |
-
net_G.load_state_dict(torch.load("res18-unet.pt", map_location=device))
|
355 |
-
model = MainModel(net_G=net_G)
|
356 |
-
model.load_state_dict(torch.load("main-model.pt", map_location=device))
|
357 |
-
|
358 |
-
|
359 |
-
class MyDataset(torch.utils.data.Dataset):
|
360 |
-
def __init__(self, img_list):
|
361 |
-
super(MyDataset, self).__init__()
|
362 |
-
self.img_list = img_list
|
363 |
-
self.augmentations = transforms.Resize((SIZE, SIZE), Image.BICUBIC)
|
364 |
-
|
365 |
-
def __len__(self):
|
366 |
-
return len(self.img_list)
|
367 |
-
|
368 |
-
def __getitem__(self, idx):
|
369 |
-
img = self.img_list[idx]
|
370 |
-
img = self.augmentations(img)
|
371 |
-
img = np.array(img)
|
372 |
-
img_lab = rgb2lab(img).astype("float32") # Converting RGB to L*a*b
|
373 |
-
img_lab = transforms.ToTensor()(img_lab)
|
374 |
-
L = img_lab[[0], ...] / 50. - 1. # Between -1 and 1
|
375 |
-
ab = img_lab[[1, 2], ...] / 110.
|
376 |
-
return {'L': L, 'ab': ab}
|
377 |
-
|
378 |
-
def make_dataloaders2(batch_size=16, n_workers=4, pin_memory=True, **kwargs):
|
379 |
-
dataset = MyDataset(**kwargs)
|
380 |
-
dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=n_workers,
|
381 |
-
pin_memory=pin_memory)
|
382 |
-
return dataloader
|
383 |
-
|
384 |
-
|
385 |
-
# st.set_option('deprecation.showfileUploaderEncoding', False)
|
386 |
-
# @st.cache(allow_output_mutation= True)
|
387 |
-
st.write("""
|
388 |
-
# Image Recolorisation
|
389 |
-
"""
|
390 |
-
)
|
391 |
-
file_up = st.file_uploader("Upload an jpg image", type=["jpg", "jpeg", "png"])
|
392 |
-
|
393 |
-
if file_up is not None:
|
394 |
-
im = Image.open(file_up)
|
395 |
-
st.text(body=f"Size of uploaded image {im.shape}")
|
396 |
-
a = im.shape
|
397 |
-
st.image(im, caption="Uploaded Image.", use_column_width='auto')
|
398 |
-
test_dl = make_dataloaders2(img_list=[im])
|
399 |
-
for data in test_dl:
|
400 |
-
model.setup_input(data)
|
401 |
-
model.optimize()
|
402 |
-
visualize(model, data, a)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|