Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,84 @@
|
|
1 |
import pickle
|
2 |
-
with open("earthquake_model.pkl", 'rb') as file:
|
3 |
-
loaded_model = pickle.load(file)
|
4 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
def greet(name):
|
7 |
-
return "Hello " + name + "!"
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
demo.launch()
|
|
|
1 |
import pickle
|
|
|
|
|
2 |
import gradio as gr
|
3 |
+
import geopandas as gpd
|
4 |
+
from shapely.geometry import Point
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import numpy as np
|
7 |
+
with open("earthquake_model.pkl", 'rb') as file:
|
8 |
+
model = pickle.load(file)
|
9 |
+
def time2num(x):
|
10 |
+
try:
|
11 |
+
(h, m, s) = str(x).split(':')
|
12 |
+
result = int(h) * 3600 + int(m) * 60 + int(s)
|
13 |
+
return result
|
14 |
+
except:
|
15 |
+
return 0
|
16 |
+
|
17 |
+
def date2num(x):
|
18 |
+
try:
|
19 |
+
(m, d, y) = str(x).split("/")
|
20 |
+
result = int(y) * 365 + int(m) * 30 + int(d)
|
21 |
+
return result
|
22 |
+
except:
|
23 |
+
return 0
|
24 |
+
|
25 |
+
def datetime2num(date_str, time_str):
|
26 |
+
date_value = date2num(date_str)
|
27 |
+
time_value = time2num(time_str)
|
28 |
+
return date_value ,time_value
|
29 |
+
def test(model, date_str, time_str,all_points):
|
30 |
+
data_list = []
|
31 |
+
for lat, lon in all_points:
|
32 |
+
date, time = datetime2num(date_str, time_str)
|
33 |
+
data_list.append([date, time, lat, lon])
|
34 |
+
np_array = np.array(data_list)
|
35 |
+
res = model.predict_proba(np_array)
|
36 |
+
return res
|
37 |
+
def create_geodf(all_points, model, date_str, time_str):
|
38 |
+
res = test(model, date_str, time_str,all_points)
|
39 |
+
|
40 |
+
data_list = []
|
41 |
+
for lat, lon in all_points:
|
42 |
+
date, time = datetime2num(date_str, time_str)
|
43 |
+
data_list.append([date, time, lat, lon])
|
44 |
+
np_array = np.array(data_list)
|
45 |
+
|
46 |
+
df = pd.DataFrame(np_array, columns=['Date', 'Time', 'Latitude', 'Longitude'])
|
47 |
+
df['Probability_2'] = [i[1] for i in res]
|
48 |
+
df['geometry'] = [Point(lon, lat) for lat, lon in zip(df['Latitude'], df['Longitude'])]
|
49 |
+
|
50 |
+
crs = "EPSG:4326"
|
51 |
+
gdf = gpd.GeoDataFrame(df, crs=crs, geometry='geometry')
|
52 |
+
|
53 |
+
return gdf
|
54 |
+
|
55 |
+
def plot_func(date_str, time_str):
|
56 |
+
min_latitude = -90
|
57 |
+
max_latitude = 90
|
58 |
+
latitude_step = 1
|
59 |
+
min_longitude = -180
|
60 |
+
max_longitude = 180
|
61 |
+
longitude_step = 1
|
62 |
+
latitudes = np.arange(min_latitude, max_latitude + latitude_step, latitude_step)
|
63 |
+
longitudes = np.arange(min_longitude, max_longitude + longitude_step, longitude_step)
|
64 |
+
all_points = np.array(np.meshgrid(latitudes, longitudes)).T.reshape(-1, 2)
|
65 |
+
gdf = create_geodf(all_points, model, date_str, time_str)
|
66 |
+
|
67 |
+
top = gdf.nlargest(100, 'Probability_2')
|
68 |
+
world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))
|
69 |
+
fig, ax = plt.subplots(figsize=(12, 12))
|
70 |
+
ax.imshow(np.ones((180, 360)), cmap='gray', extent=[-180, 180, -90, 90])
|
71 |
+
world.plot(ax=ax, color='lightgray', edgecolor='black')
|
72 |
+
top.plot(ax=ax, markersize=50, color='red', legend=True, alpha=0.5)
|
73 |
+
|
74 |
+
plt.xlabel('Longitude')
|
75 |
+
plt.ylabel('Latitude')
|
76 |
+
plt.title('Possible Earthquake Map')
|
77 |
+
plt.grid(True)
|
78 |
+
|
79 |
+
return plt.gcf()
|
80 |
+
|
81 |
+
inputs = [gr.inputs.Textbox(label="Date: (MM/DD/YYYY)"), gr.inputs.Textbox(label="Time: (HH:MM:SS) GMT-4")]
|
82 |
|
|
|
|
|
83 |
|
84 |
+
gr.Interface(fn=plot_func, inputs=inputs, outputs="plot",debugging=True).launch()
|
|
|
|