File size: 5,320 Bytes
3c77625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ac2401
3c77625
 
 
 
3ac2401
3c77625
 
 
 
 
 
 
 
 
3ac2401
3c77625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83c8d0b
3c77625
 
 
 
baa6caf
 
3c77625
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import yfinance as yf
import pandas as pd
import numpy as np
import torch
import joblib
from tqdm import tqdm
from modeling_stockllama import StockLlamaForForecasting
from configuration_stockllama import StockLlamaConfig
from peft import LoraConfig, get_peft_model
from datasets import Dataset
import os
from transformers import Trainer, TrainingArguments
from huggingface_hub import login, upload_file
import wandb
import gradio as gr
import spaces
HF_TOKEN = os.getenv('HF_TOKEN')
WANDB_TOKEN = os.getenv('WANDB_TOKEN')


@spaces.GPU
def train_stock_model(stock_symbol, start_date, end_date, feature_range=(10, 100), data_seq_length=256, epochs=10, batch_size=16, learning_rate=2e-4):
    try:
        stock_data = yf.download(stock_symbol, start=start_date, end=end_date, progress=False)
    except Exception as e:
        print(f"Error downloading data for {stock_symbol}: {e}")
        return
    
    data = stock_data["Close"]

    class Scaler:
        def __init__(self, feature_range):
            self.feature_range = feature_range
            self.min_df = None
            self.max_df = None

        def fit(self, df: pd.Series):
            self.min_df = df.min()
            self.max_df = df.max()

        def transform(self, df: pd.Series) -> pd.Series:
            min_val, max_val = self.feature_range
            scaled_df = (df - self.min_df) / (self.max_df - self.min_df)
            scaled_df = scaled_df * (max_val - min_val) + min_val
            return scaled_df

        def inverse_transform(self, X: np.ndarray) -> np.ndarray:
            min_val, max_val = self.feature_range
            min_x, max_x = np.min(X), np.max(X)
            return (X - min_x) / (max_x - min_x) * (max_val - min_val) + min_val

    scaler = Scaler(feature_range)
    scaler.fit(data)
    scaled_data = scaler.transform(data)

    seq = [np.array(scaled_data[i:i + data_seq_length]) for i in range(len(scaled_data) - data_seq_length)]
    target = [np.array(scaled_data[i + data_seq_length:i + data_seq_length + 1]) for i in range(len(scaled_data) - data_seq_length)]

    seq_tensors = [torch.tensor(s, dtype=torch.float32) for s in seq]
    target_tensors = [t[0] for t in target]

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model = StockLlamaForForecasting.from_pretrained("Q-bert/StockLlama").to(device)
    print("Model Installed.")
    config = LoraConfig(
        r=64,
        lora_alpha=32,
        target_modules=["q_proj", "v_proj", "o_proj", "k_proj"],
        lora_dropout=0.05,
        bias="none",
        task_type="CAUSAL_LM",
    )
    model = get_peft_model(model, config)
    print("Model pefted.")
    login(token=HF_TOKEN)
    wandb.login(key=WANDB_TOKEN)
    dct = {"input_ids": seq_tensors, "label": target_tensors}
    dataset = Dataset.from_dict(dct)
    dataset.push_to_hub(f"Q-bert/{stock_symbol}-{start_date}_{end_date}")
    trainer = Trainer(
        model=model,
        train_dataset=dataset,
        args=TrainingArguments(
            per_device_train_batch_size=batch_size,
            gradient_accumulation_steps=4,
            num_train_epochs=epochs,
            warmup_steps=5,
            save_steps=100,
            learning_rate=learning_rate,
            fp16=True,
            logging_steps=1,
            push_to_hub=True,
            report_to="wandb",
            optim="adamw_torch",
            weight_decay=0.01,
            lr_scheduler_type="linear",
            seed=3407,
            output_dir=f"StockLlama-LoRA-{stock_symbol}",
        ),
    )
    
    trainer.train()

    model = model.merge_and_unload()
    model.push_to_hub(f"Q-bert/StockLlama-tuned-{stock_symbol}")
    scaler_path = "scaler.joblib"
    joblib.dump(scaler, scaler_path)
    upload_file(
        path_or_fileobj=scaler_path,
        path_in_repo=f"scalers/{scaler_path}",
        repo_id=f"Q-bert/StockLlama-tuned-{stock_symbol}"
    )
@spaces.GPU
def gradio_train_stock_model(stock_symbol, start_date, end_date, feature_range_min, feature_range_max, data_seq_length, epochs, batch_size, learning_rate):
    feature_range = (feature_range_min, feature_range_max)
    train_stock_model(
        stock_symbol=stock_symbol,
        start_date=start_date,
        end_date=end_date,
        feature_range=feature_range,
        data_seq_length=data_seq_length,
        epochs=epochs,
        batch_size=batch_size,
        learning_rate=learning_rate
    )
    return f"Training initiated for {stock_symbol} from {start_date} to {end_date}."

iface = gr.Interface(
    fn=gradio_train_stock_model,
    inputs=[
        gr.Textbox(label="Stock Symbol", value="LUNC-USD"),
        gr.Textbox(label="Start Date", value="2023-01-01"),
        gr.Textbox(label="End Date", value="2024-08-24"),
        gr.Slider(minimum=0, maximum=100, step=1, label="Feature Range Min", value=10),
        gr.Slider(minimum=0, maximum=100, step=1, label="Feature Range Max", value=100),
        gr.Slider(minimum=1, maximum=512, step=1, label="Data Sequence Length", value=256),
        gr.Slider(minimum=1, maximum=50, step=1, label="Epochs", value=10),
        gr.Slider(minimum=1, maximum=64, step=1, label="Batch Size", value=16),
        gr.Slider(minimum=1e-5, maximum=1e-1, step=1e-5, label="Learning Rate", value=2e-4)
    ],
    outputs="text",
)

iface.launch()