Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,320 Bytes
3c77625 3ac2401 3c77625 3ac2401 3c77625 3ac2401 3c77625 83c8d0b 3c77625 baa6caf 3c77625 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import yfinance as yf
import pandas as pd
import numpy as np
import torch
import joblib
from tqdm import tqdm
from modeling_stockllama import StockLlamaForForecasting
from configuration_stockllama import StockLlamaConfig
from peft import LoraConfig, get_peft_model
from datasets import Dataset
import os
from transformers import Trainer, TrainingArguments
from huggingface_hub import login, upload_file
import wandb
import gradio as gr
import spaces
HF_TOKEN = os.getenv('HF_TOKEN')
WANDB_TOKEN = os.getenv('WANDB_TOKEN')
@spaces.GPU
def train_stock_model(stock_symbol, start_date, end_date, feature_range=(10, 100), data_seq_length=256, epochs=10, batch_size=16, learning_rate=2e-4):
try:
stock_data = yf.download(stock_symbol, start=start_date, end=end_date, progress=False)
except Exception as e:
print(f"Error downloading data for {stock_symbol}: {e}")
return
data = stock_data["Close"]
class Scaler:
def __init__(self, feature_range):
self.feature_range = feature_range
self.min_df = None
self.max_df = None
def fit(self, df: pd.Series):
self.min_df = df.min()
self.max_df = df.max()
def transform(self, df: pd.Series) -> pd.Series:
min_val, max_val = self.feature_range
scaled_df = (df - self.min_df) / (self.max_df - self.min_df)
scaled_df = scaled_df * (max_val - min_val) + min_val
return scaled_df
def inverse_transform(self, X: np.ndarray) -> np.ndarray:
min_val, max_val = self.feature_range
min_x, max_x = np.min(X), np.max(X)
return (X - min_x) / (max_x - min_x) * (max_val - min_val) + min_val
scaler = Scaler(feature_range)
scaler.fit(data)
scaled_data = scaler.transform(data)
seq = [np.array(scaled_data[i:i + data_seq_length]) for i in range(len(scaled_data) - data_seq_length)]
target = [np.array(scaled_data[i + data_seq_length:i + data_seq_length + 1]) for i in range(len(scaled_data) - data_seq_length)]
seq_tensors = [torch.tensor(s, dtype=torch.float32) for s in seq]
target_tensors = [t[0] for t in target]
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = StockLlamaForForecasting.from_pretrained("Q-bert/StockLlama").to(device)
print("Model Installed.")
config = LoraConfig(
r=64,
lora_alpha=32,
target_modules=["q_proj", "v_proj", "o_proj", "k_proj"],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
print("Model pefted.")
login(token=HF_TOKEN)
wandb.login(key=WANDB_TOKEN)
dct = {"input_ids": seq_tensors, "label": target_tensors}
dataset = Dataset.from_dict(dct)
dataset.push_to_hub(f"Q-bert/{stock_symbol}-{start_date}_{end_date}")
trainer = Trainer(
model=model,
train_dataset=dataset,
args=TrainingArguments(
per_device_train_batch_size=batch_size,
gradient_accumulation_steps=4,
num_train_epochs=epochs,
warmup_steps=5,
save_steps=100,
learning_rate=learning_rate,
fp16=True,
logging_steps=1,
push_to_hub=True,
report_to="wandb",
optim="adamw_torch",
weight_decay=0.01,
lr_scheduler_type="linear",
seed=3407,
output_dir=f"StockLlama-LoRA-{stock_symbol}",
),
)
trainer.train()
model = model.merge_and_unload()
model.push_to_hub(f"Q-bert/StockLlama-tuned-{stock_symbol}")
scaler_path = "scaler.joblib"
joblib.dump(scaler, scaler_path)
upload_file(
path_or_fileobj=scaler_path,
path_in_repo=f"scalers/{scaler_path}",
repo_id=f"Q-bert/StockLlama-tuned-{stock_symbol}"
)
@spaces.GPU
def gradio_train_stock_model(stock_symbol, start_date, end_date, feature_range_min, feature_range_max, data_seq_length, epochs, batch_size, learning_rate):
feature_range = (feature_range_min, feature_range_max)
train_stock_model(
stock_symbol=stock_symbol,
start_date=start_date,
end_date=end_date,
feature_range=feature_range,
data_seq_length=data_seq_length,
epochs=epochs,
batch_size=batch_size,
learning_rate=learning_rate
)
return f"Training initiated for {stock_symbol} from {start_date} to {end_date}."
iface = gr.Interface(
fn=gradio_train_stock_model,
inputs=[
gr.Textbox(label="Stock Symbol", value="LUNC-USD"),
gr.Textbox(label="Start Date", value="2023-01-01"),
gr.Textbox(label="End Date", value="2024-08-24"),
gr.Slider(minimum=0, maximum=100, step=1, label="Feature Range Min", value=10),
gr.Slider(minimum=0, maximum=100, step=1, label="Feature Range Max", value=100),
gr.Slider(minimum=1, maximum=512, step=1, label="Data Sequence Length", value=256),
gr.Slider(minimum=1, maximum=50, step=1, label="Epochs", value=10),
gr.Slider(minimum=1, maximum=64, step=1, label="Batch Size", value=16),
gr.Slider(minimum=1e-5, maximum=1e-1, step=1e-5, label="Learning Rate", value=2e-4)
],
outputs="text",
)
iface.launch()
|