Spaces:
Sleeping
Sleeping
from transformers.configuration_utils import PretrainedConfig | |
class StockLlamaConfig(PretrainedConfig): | |
model_type = "stockllama" | |
keys_to_ignore_at_inference = ["past_key_values"] | |
def __init__( | |
self, | |
vocab_size=32000, | |
hidden_size=4096, | |
intermediate_size=11008, | |
num_hidden_layers=32, | |
num_attention_heads=32, | |
num_key_value_heads=None, | |
hidden_act="silu", | |
max_position_embeddings=2048, | |
term_number=4, | |
initializer_range=0.02, | |
rms_norm_eps=1e-6, | |
use_cache=True, | |
pad_token_id=None, | |
bos_token_id=1, | |
eos_token_id=2, | |
pretraining_tp=1, | |
tie_word_embeddings=False, | |
rope_theta=10000.0, | |
rope_scaling=None, | |
attention_bias=False, | |
attention_dropout=0.0, | |
mlp_bias=False, | |
head_dim=None, | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
self.max_position_embeddings = max_position_embeddings | |
self.term_number = term_number | |
self.hidden_size = hidden_size | |
self.intermediate_size = intermediate_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
if num_key_value_heads is None: | |
num_key_value_heads = num_attention_heads | |
self.num_key_value_heads = num_key_value_heads | |
self.hidden_act = hidden_act | |
self.initializer_range = initializer_range | |
self.rms_norm_eps = rms_norm_eps | |
self.pretraining_tp = pretraining_tp | |
self.use_cache = use_cache | |
self.rope_theta = rope_theta | |
self.rope_scaling = rope_scaling | |
self.attention_bias = attention_bias | |
self.attention_dropout = attention_dropout | |
self.mlp_bias = mlp_bias | |
self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads | |
super().__init__( | |
pad_token_id=pad_token_id, | |
bos_token_id=bos_token_id, | |
eos_token_id=eos_token_id, | |
tie_word_embeddings=tie_word_embeddings, | |
**kwargs, | |
) | |