Q-bert's picture
Update app.py
b665872 verified
raw
history blame
5.87 kB
import yfinance as yf
import pandas as pd
import numpy as np
import torch
import joblib
from tqdm import tqdm
from modeling_stockllama import StockLlamaForForecasting
from configuration_stockllama import StockLlamaConfig
from peft import LoraConfig, get_peft_model
from datasets import Dataset
import os
from transformers import Trainer, TrainingArguments
from huggingface_hub import login, upload_file, hf_hub_download
import wandb
import gradio as gr
import spaces
from huggingface_hub import HfApi
hf_api = HfApi()
HF_TOKEN = os.getenv('HF_TOKEN')
WANDB_TOKEN = os.getenv('WANDB_TOKEN')
login(token=HF_TOKEN)
wandb.login(key=WANDB_TOKEN)
class Scaler:
def __init__(self, feature_range):
self.feature_range = feature_range
self.min_df = None
self.max_df = None
def fit(self, df: pd.Series):
self.min_df = df.min()
self.max_df = df.max()
def transform(self, df: pd.Series) -> pd.Series:
min_val, max_val = self.feature_range
scaled_df = (df - self.min_df) / (self.max_df - self.min_df)
scaled_df = scaled_df * (max_val - min_val) + min_val
return scaled_df
def inverse_transform(self, X: np.ndarray) -> np.ndarray:
min_val, max_val = self.feature_range
min_x, max_x = np.min(X), np.max(X)
return (X - min_x) / (max_x - min_x) * (max_val - min_val) + min_val
def check_existing_model(stock_symbol, start_date, end_date):
repo_id = f"Q-bert/StockLlama-tuned-{stock_symbol}-{stock_symbol}-{start_date}_{end_date}"
state = repo_id in [model.modelId for model in hf_api.list_models()]
return state
@spaces.GPU(duration=300)
def train_stock_model(stock_symbol, start_date, end_date, feature_range=(10, 100), data_seq_length=256, epochs=10, batch_size=16, learning_rate=2e-4):
repo_id = f"Q-bert/StockLlama-tuned{stock_symbol}-{start_date}_{end_date}"
if check_existing_model(stock_symbol, start_date, end_date):
return f"Model for {stock_symbol} from {start_date} to {end_date} already exists."
try:
stock_data = yf.download(stock_symbol, start=start_date, end=end_date, progress=False)
except Exception as e:
print(f"Error downloading data for {stock_symbol}: {e}")
return
data = stock_data["Close"]
scaler = Scaler(feature_range)
scaler.fit(data)
scaled_data = scaler.transform(data)
seq = [np.array(scaled_data[i:i + data_seq_length]) for i in range(len(scaled_data) - data_seq_length)]
target = [np.array(scaled_data[i + data_seq_length:i + data_seq_length + 1]) for i in range(len(scaled_data) - data_seq_length)]
seq_tensors = [torch.tensor(s, dtype=torch.float32) for s in seq]
target_tensors = [t[0] for t in target]
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = StockLlamaForForecasting.from_pretrained("StockLlama/StockLlama").to(device)
config = LoraConfig(
r=64,
lora_alpha=32,
target_modules=["q_proj", "v_proj", "o_proj", "k_proj"],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
dct = {"input_ids": seq_tensors, "label": target_tensors}
dataset = Dataset.from_dict(dct)
dataset.push_to_hub(repo_id)
trainer = Trainer(
model=model,
train_dataset=dataset,
args=TrainingArguments(
per_device_train_batch_size=batch_size,
gradient_accumulation_steps=4,
num_train_epochs=epochs,
warmup_steps=5,
save_steps=10,
learning_rate=learning_rate,
fp16=True,
logging_steps=1,
push_to_hub=True,
report_to="wandb",
optim="adamw_torch",
weight_decay=0.01,
lr_scheduler_type="linear",
seed=3407,
output_dir=f"StockLlama/StockLlama-LoRA-{stock_symbol}-{start_date}_{end_date}",
),
)
trainer.train()
model = model.merge_and_unload()
model.push_to_hub(f"StockLlama/StockLlama-tuned-{stock_symbol}-{start_date}_{end_date}")
scaler_path = "scaler.joblib"
joblib.dump(scaler, scaler_path)
upload_file(
path_or_fileobj=scaler_path,
path_in_repo=f"scalers/{scaler_path}",
repo_id=f"StockLlama/StockLlama-tuned-{stock_symbol}-{start_date}_{end_date}"
)
return f"Training completed and model saved for {stock_symbol} from {start_date} to {end_date}."
@spaces.GPU(duration=300)
def gradio_train_stock_model(stock_symbol, start_date, end_date, feature_range_min, feature_range_max, data_seq_length, epochs, batch_size, learning_rate):
feature_range = (feature_range_min, feature_range_max)
result = train_stock_model(
stock_symbol=stock_symbol,
start_date=start_date,
end_date=end_date,
feature_range=feature_range,
data_seq_length=data_seq_length,
epochs=epochs,
batch_size=batch_size,
learning_rate=learning_rate
)
return result
iface = gr.Interface(
fn=gradio_train_stock_model,
inputs=[
gr.Textbox(label="Stock Symbol", value="BTC-USD"),
gr.Textbox(label="Start Date", value="2023-01-01"),
gr.Textbox(label="End Date", value="2024-08-24"),
gr.Slider(minimum=0, maximum=100, step=1, label="Feature Range Min", value=10),
gr.Slider(minimum=0, maximum=100, step=1, label="Feature Range Max", value=100),
gr.Slider(minimum=1, maximum=512, step=1, label="Data Sequence Length", value=256),
gr.Slider(minimum=1, maximum=50, step=1, label="Epochs", value=10),
gr.Slider(minimum=1, maximum=64, step=1, label="Batch Size", value=16),
gr.Slider(minimum=1e-5, maximum=1e-1, step=1e-5, label="Learning Rate", value=2e-4)
],
outputs="text",
)
iface.launch()