Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -17,6 +17,26 @@ import spaces
|
|
17 |
HF_TOKEN = os.getenv('HF_TOKEN')
|
18 |
WANDB_TOKEN = os.getenv('WANDB_TOKEN')
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
@spaces.GPU
|
22 |
def train_stock_model(stock_symbol, start_date, end_date, feature_range=(10, 100), data_seq_length=256, epochs=10, batch_size=16, learning_rate=2e-4):
|
@@ -28,27 +48,6 @@ def train_stock_model(stock_symbol, start_date, end_date, feature_range=(10, 100
|
|
28 |
|
29 |
data = stock_data["Close"]
|
30 |
|
31 |
-
class Scaler:
|
32 |
-
def __init__(self, feature_range):
|
33 |
-
self.feature_range = feature_range
|
34 |
-
self.min_df = None
|
35 |
-
self.max_df = None
|
36 |
-
|
37 |
-
def fit(self, df: pd.Series):
|
38 |
-
self.min_df = df.min()
|
39 |
-
self.max_df = df.max()
|
40 |
-
|
41 |
-
def transform(self, df: pd.Series) -> pd.Series:
|
42 |
-
min_val, max_val = self.feature_range
|
43 |
-
scaled_df = (df - self.min_df) / (self.max_df - self.min_df)
|
44 |
-
scaled_df = scaled_df * (max_val - min_val) + min_val
|
45 |
-
return scaled_df
|
46 |
-
|
47 |
-
def inverse_transform(self, X: np.ndarray) -> np.ndarray:
|
48 |
-
min_val, max_val = self.feature_range
|
49 |
-
min_x, max_x = np.min(X), np.max(X)
|
50 |
-
return (X - min_x) / (max_x - min_x) * (max_val - min_val) + min_val
|
51 |
-
|
52 |
scaler = Scaler(feature_range)
|
53 |
scaler.fit(data)
|
54 |
scaled_data = scaler.transform(data)
|
@@ -56,12 +55,11 @@ def train_stock_model(stock_symbol, start_date, end_date, feature_range=(10, 100
|
|
56 |
seq = [np.array(scaled_data[i:i + data_seq_length]) for i in range(len(scaled_data) - data_seq_length)]
|
57 |
target = [np.array(scaled_data[i + data_seq_length:i + data_seq_length + 1]) for i in range(len(scaled_data) - data_seq_length)]
|
58 |
|
59 |
-
seq_tensors = [torch.tensor(s, dtype=torch.float32) for s in seq]
|
60 |
target_tensors = [t[0] for t in target]
|
61 |
|
62 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
63 |
model = StockLlamaForForecasting.from_pretrained("Q-bert/StockLlama").to(device)
|
64 |
-
print("Model Installed.")
|
65 |
config = LoraConfig(
|
66 |
r=64,
|
67 |
lora_alpha=32,
|
@@ -71,7 +69,7 @@ def train_stock_model(stock_symbol, start_date, end_date, feature_range=(10, 100
|
|
71 |
task_type="CAUSAL_LM",
|
72 |
)
|
73 |
model = get_peft_model(model, config)
|
74 |
-
|
75 |
login(token=HF_TOKEN)
|
76 |
wandb.login(key=WANDB_TOKEN)
|
77 |
dct = {"input_ids": seq_tensors, "label": target_tensors}
|
@@ -110,6 +108,7 @@ def train_stock_model(stock_symbol, start_date, end_date, feature_range=(10, 100
|
|
110 |
path_in_repo=f"scalers/{scaler_path}",
|
111 |
repo_id=f"Q-bert/StockLlama-tuned-{stock_symbol}"
|
112 |
)
|
|
|
113 |
@spaces.GPU
|
114 |
def gradio_train_stock_model(stock_symbol, start_date, end_date, feature_range_min, feature_range_max, data_seq_length, epochs, batch_size, learning_rate):
|
115 |
feature_range = (feature_range_min, feature_range_max)
|
|
|
17 |
HF_TOKEN = os.getenv('HF_TOKEN')
|
18 |
WANDB_TOKEN = os.getenv('WANDB_TOKEN')
|
19 |
|
20 |
+
class Scaler:
|
21 |
+
def __init__(self, feature_range):
|
22 |
+
self.feature_range = feature_range
|
23 |
+
self.min_df = None
|
24 |
+
self.max_df = None
|
25 |
+
|
26 |
+
def fit(self, df: pd.Series):
|
27 |
+
self.min_df = df.min()
|
28 |
+
self.max_df = df.max()
|
29 |
+
|
30 |
+
def transform(self, df: pd.Series) -> pd.Series:
|
31 |
+
min_val, max_val = self.feature_range
|
32 |
+
scaled_df = (df - self.min_df) / (self.max_df - self.min_df)
|
33 |
+
scaled_df = scaled_df * (max_val - min_val) + min_val
|
34 |
+
return scaled_df
|
35 |
+
|
36 |
+
def inverse_transform(self, X: np.ndarray) -> np.ndarray:
|
37 |
+
min_val, max_val = self.feature_range
|
38 |
+
min_x, max_x = np.min(X), np.max(X)
|
39 |
+
return (X - min_x) / (max_x - min_x) * (max_val - min_val) + min_val
|
40 |
|
41 |
@spaces.GPU
|
42 |
def train_stock_model(stock_symbol, start_date, end_date, feature_range=(10, 100), data_seq_length=256, epochs=10, batch_size=16, learning_rate=2e-4):
|
|
|
48 |
|
49 |
data = stock_data["Close"]
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
scaler = Scaler(feature_range)
|
52 |
scaler.fit(data)
|
53 |
scaled_data = scaler.transform(data)
|
|
|
55 |
seq = [np.array(scaled_data[i:i + data_seq_length]) for i in range(len(scaled_data) - data_seq_length)]
|
56 |
target = [np.array(scaled_data[i + data_seq_length:i + data_seq_length + 1]) for i in range(len(scaled_data) - data_seq_length)]
|
57 |
|
58 |
+
seq_tensors = [torch.tensor(s, dtype=torch.float32).unsqueeze(0) for s in seq]
|
59 |
target_tensors = [t[0] for t in target]
|
60 |
|
61 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
62 |
model = StockLlamaForForecasting.from_pretrained("Q-bert/StockLlama").to(device)
|
|
|
63 |
config = LoraConfig(
|
64 |
r=64,
|
65 |
lora_alpha=32,
|
|
|
69 |
task_type="CAUSAL_LM",
|
70 |
)
|
71 |
model = get_peft_model(model, config)
|
72 |
+
|
73 |
login(token=HF_TOKEN)
|
74 |
wandb.login(key=WANDB_TOKEN)
|
75 |
dct = {"input_ids": seq_tensors, "label": target_tensors}
|
|
|
108 |
path_in_repo=f"scalers/{scaler_path}",
|
109 |
repo_id=f"Q-bert/StockLlama-tuned-{stock_symbol}"
|
110 |
)
|
111 |
+
|
112 |
@spaces.GPU
|
113 |
def gradio_train_stock_model(stock_symbol, start_date, end_date, feature_range_min, feature_range_max, data_seq_length, epochs, batch_size, learning_rate):
|
114 |
feature_range = (feature_range_min, feature_range_max)
|