import gradio as gr import ctransformers class Z(object): def __init__(self): self.llm = None def init(self): pass def greet(self, txt0, paramTemp): prompt0 = txt0 # for Wizard-Vicuna-13B #prompt00 = f'''USER: {prompt0} #ASSISTANT:''' # for starcoder prompt00 = f'''{prompt0}''' prompt00 = f'''Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt0} ### Response:''' response0 = llm(prompt00, max_new_tokens=198, temperature=paramTemp) # 0.5, 0.3 return f'{response0}' from ctransformers import AutoModelForCausalLM # wizzard vicuna # see https://github.com/melodysdreamj/WizardVicunaLM #llm = AutoModelForCausalLM.from_pretrained('TheBloke/Wizard-Vicuna-13B-Uncensored-GGML', model_file='Wizard-Vicuna-13B-Uncensored.ggmlv3.q4_0.bin', model_type='llama') #llm = AutoModelForCausalLM.from_pretrained('mverrilli/dolly-v2-12b-ggml', model_file='ggml-model-q5_0.bin', model_type='dolly-v2') #llm = AutoModelForCausalLM.from_pretrained('mverrilli/dolly-v2-7b-ggml', model_file='ggml-model-q5_0.bin', model_type='dolly-v2') # non-RLHF model # 4 may 2023 # site https://huggingface.co/bigcode/starcoder modelInfo = {'path':'NeoDim/starcoder-GGML', 'subPath':'starcoder-ggml-q8_0.bin', 'promptType':'raw', 'modelType':'starcoder'} llm = AutoModelForCausalLM.from_pretrained(modelInfo['path'], model_file=modelInfo['subPath'], model_type=modelInfo['modelType']) z = Z() z.llm = llm z.modelInfo = modelInfo z.init() def greet(prompt, temperature): global z return z.greet(prompt, temperature) iface = gr.Interface(fn=greet, inputs=["text", gr.Slider(0.0, 1.0, value=0.41)], outputs="text") iface.launch()