|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer |
|
from peft import PeftModel |
|
import gradio as gr |
|
from threading import Thread |
|
import spaces |
|
import os |
|
|
|
|
|
HF_TOKEN = os.environ.get("HF_TOKEN", None) |
|
BASE_MODEL_ID = "Qwen/Qwen2.5-Coder-7B-Instruct" |
|
LORA_MODEL_PATH = "QLWD/test-7b" |
|
|
|
|
|
TITLE = "<h1><center>LoRA 微调模型测试</center></h1>" |
|
|
|
DESCRIPTION = f""" |
|
<h3>模型: <a href="https://huggingface.co/{LORA_MODEL_PATH}">LoRA 微调模型</a></h3> |
|
<center> |
|
<p>测试基础模型 + LoRA 补丁的生成效果。</p> |
|
</center> |
|
""" |
|
|
|
CSS = """ |
|
.duplicate-button { |
|
margin: auto !important; |
|
color: white !important; |
|
background: black !important; |
|
border-radius: 100vh !important; |
|
} |
|
h3 { |
|
text-align: center; |
|
} |
|
""" |
|
|
|
|
|
base_model = AutoModelForCausalLM.from_pretrained(BASE_MODEL_ID, torch_dtype=torch.float16, device_map="auto", use_auth_token=HF_TOKEN) |
|
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_ID, use_auth_token=HF_TOKEN) |
|
|
|
|
|
model = PeftModel.from_pretrained(base_model, LORA_MODEL_PATH, use_auth_token=HF_TOKEN) |
|
model = model.to("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
@spaces.GPU(duration=50) |
|
def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float): |
|
conversation = [] |
|
|
|
|
|
conversation.append({"role": "system", "content": "你是一个名为'漏洞助手'的检测代码漏洞的AI助手,帮助用户找到并修复代码中的安全问题,给出代码漏洞的具体片段,指出类型,给出修复建议。"}) |
|
|
|
|
|
for prompt, answer in history: |
|
conversation.extend([{"role": "user", "content": prompt}, {"role": "漏洞助手", "content": answer}]) |
|
|
|
|
|
conversation.append({"role": "user", "content": message}) |
|
|
|
|
|
input_ids = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True) |
|
inputs = tokenizer(input_ids, return_tensors="pt").to("cuda") |
|
|
|
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) |
|
|
|
|
|
generate_kwargs = dict( |
|
inputs, |
|
streamer=streamer, |
|
top_k=top_k, |
|
top_p=top_p, |
|
repetition_penalty=penalty, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=True, |
|
temperature=temperature, |
|
eos_token_id=[151645, 151643], |
|
) |
|
|
|
|
|
thread = Thread(target=model.generate, kwargs=generate_kwargs) |
|
thread.start() |
|
|
|
buffer = "" |
|
for new_text in streamer: |
|
buffer += new_text |
|
yield buffer |
|
|
|
|
|
chatbot = gr.Chatbot(height=450) |
|
|
|
with gr.Blocks(css=CSS) as demo: |
|
gr.HTML(TITLE) |
|
gr.HTML(DESCRIPTION) |
|
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button") |
|
|
|
gr.ChatInterface( |
|
fn=stream_chat, |
|
chatbot=chatbot, |
|
fill_height=True, |
|
additional_inputs_accordion=gr.Accordion(label="⚙️ 参数设置", open=False, render=False), |
|
additional_inputs=[ |
|
gr.Slider(minimum=0, maximum=1, step=0.1, value=0.8, label="Temperature", render=False), |
|
gr.Slider(minimum=128, maximum=4096, step=1, value=1024, label="Max new tokens", render=False), |
|
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.8, label="top_p", render=False), |
|
gr.Slider(minimum=1, maximum=20, step=1, value=20, label="top_k", render=False), |
|
gr.Slider(minimum=0.0, maximum=2.0, step=0.1, value=1.0, label="Repetition penalty", render=False), |
|
], |
|
cache_examples=False, |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|