Spaces:
Runtime error
Runtime error
Add application file
Browse files- app.py +107 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
import requests
|
5 |
+
|
6 |
+
import hopsworks
|
7 |
+
import joblib
|
8 |
+
|
9 |
+
project = hopsworks.login()
|
10 |
+
fs = project.get_feature_store()
|
11 |
+
|
12 |
+
mr = project.get_model_registry()
|
13 |
+
model = mr.get_model("titanic_modal", version=1)
|
14 |
+
model_dir = model.download()
|
15 |
+
model = joblib.load(model_dir + "/titanic_model.pkl")
|
16 |
+
|
17 |
+
|
18 |
+
def titanic(pclass, sex, age, fare, embarked, familysize, appellation, cabin):
|
19 |
+
input_list = []
|
20 |
+
# PClass
|
21 |
+
input_list.append(int(pclass))
|
22 |
+
|
23 |
+
# Gender
|
24 |
+
if sex == "Male":
|
25 |
+
input_list.append(0)
|
26 |
+
else:
|
27 |
+
input_list.append(1)
|
28 |
+
|
29 |
+
# Age
|
30 |
+
input_list.append(age)
|
31 |
+
|
32 |
+
# Fare
|
33 |
+
input_list.append(fare)
|
34 |
+
|
35 |
+
# Embarked
|
36 |
+
if embarked == "S":
|
37 |
+
input_list.append(0)
|
38 |
+
elif embarked == "C":
|
39 |
+
input_list.append(1)
|
40 |
+
elif embarked == "Q":
|
41 |
+
input_list.append(2)
|
42 |
+
|
43 |
+
# Family Size
|
44 |
+
input_list.append(familysize)
|
45 |
+
|
46 |
+
# Appellation
|
47 |
+
if appellation == "master":
|
48 |
+
input_list.append(1).append(0).append(0).append(0).append(0).append(0)
|
49 |
+
elif appellation == "miss":
|
50 |
+
input_list.append(0).append(1).append(0).append(0).append(0).append(0)
|
51 |
+
elif appellation == "mr":
|
52 |
+
input_list.append(0).append(0).append(1).append(0).append(0).append(0)
|
53 |
+
elif appellation == "mrs":
|
54 |
+
input_list.append(0).append(0).append(0).append(1).append(0).append(0)
|
55 |
+
elif appellation == "officer":
|
56 |
+
input_list.append(0).append(0).append(0).append(0).append(1).append(0)
|
57 |
+
elif appellation == "royalty":
|
58 |
+
input_list.append(0).append(0).append(0).append(0).append(0).append(1)
|
59 |
+
|
60 |
+
# Cabin
|
61 |
+
if cabin == "A":
|
62 |
+
input_list.append(1).append(0).append(0).append(0).append(0).append(0).append(0).append(0).append(0)
|
63 |
+
elif cabin == "B":
|
64 |
+
input_list.append(0).append(1).append(0).append(0).append(0).append(0).append(0).append(0).append(0)
|
65 |
+
elif cabin == "C":
|
66 |
+
input_list.append(0).append(0).append(1).append(0).append(0).append(0).append(0).append(0).append(0)
|
67 |
+
elif cabin == "D":
|
68 |
+
input_list.append(0).append(0).append(0).append(1).append(0).append(0).append(0).append(0).append(0)
|
69 |
+
elif cabin == "E":
|
70 |
+
input_list.append(0).append(0).append(0).append(0).append(1).append(0).append(0).append(0).append(0)
|
71 |
+
elif cabin == "F":
|
72 |
+
input_list.append(0).append(0).append(0).append(0).append(0).append(1).append(0).append(0).append(0)
|
73 |
+
elif cabin == "G":
|
74 |
+
input_list.append(0).append(0).append(0).append(0).append(0).append(0).append(1).append(0).append(0)
|
75 |
+
elif cabin == "T":
|
76 |
+
input_list.append(0).append(0).append(0).append(0).append(0).append(0).append(0).append(1).append(0)
|
77 |
+
else:
|
78 |
+
input_list.append(0).append(0).append(0).append(0).append(0).append(0).append(0).append(0).append(1)
|
79 |
+
|
80 |
+
|
81 |
+
# 'res' is a list of predictions returned as the label.
|
82 |
+
res = model.predict(np.asarray(input_list).reshape(1, -1))
|
83 |
+
# We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want
|
84 |
+
# the first element.
|
85 |
+
titanic_url = "https://github.com/Qinglin2000/ID2223" + str(res[0]) + ".png?raw=true"
|
86 |
+
img = Image.open(requests.get(titanic_url, stream=True).raw)
|
87 |
+
return img
|
88 |
+
|
89 |
+
|
90 |
+
demo = gr.Interface(
|
91 |
+
fn=titanic,
|
92 |
+
title="Titatnic Predictive Analytics",
|
93 |
+
description="Experiment with titanic dataset values.",
|
94 |
+
allow_flagging="never",
|
95 |
+
inputs=[
|
96 |
+
gr.Dropdown(choices=["1", "2", "3"], label="PClass", value="1"),
|
97 |
+
gr.Radio(choices=["Male", "Female"], label="Gender", value="Male"),
|
98 |
+
gr.inputs.Number(default=30.0, label="Age"),
|
99 |
+
gr.inputs.Number(default=40.99, label="Fare"),
|
100 |
+
gr.Dropdown(choices=["S","C","Q"], label="Embarked", value="S"),
|
101 |
+
gr.Number(label="Family Size", precision=0, value=1),
|
102 |
+
gr.Dropdown(choices=["master", "miss", "mr", "mrs", "officer", "royalty"], label="Appellation", value="master"),
|
103 |
+
gr.Dropdown(choices=["A", "B", "C", "D", "E", "F", "G", "T", "U"], label="Cabin", value="A"),
|
104 |
+
],
|
105 |
+
outputs=gr.Image(type="pil"))
|
106 |
+
|
107 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
hopsworks
|
2 |
+
joblib
|
3 |
+
scikit-learn
|
4 |
+
|