Spaces:
Running
Running
import os | |
import sys | |
import json | |
import math | |
import string | |
import random | |
import argparse | |
import logging | |
from typing import List, Tuple, Optional, AsyncGenerator | |
import aiohttp | |
import uvicorn | |
import requests | |
import gradio as gr | |
from fastapi import FastAPI, Request | |
from starlette.responses import HTMLResponse | |
# Configure logging | |
logging.basicConfig( | |
level=logging.INFO, | |
format='%(asctime)s [%(levelname)s] %(message)s', | |
handlers=[ | |
logging.StreamHandler(sys.stdout) | |
] | |
) | |
logger = logging.getLogger(__name__) | |
# Environment Variables | |
API_BASE = os.getenv("API_BASE", "env") | |
API_KEY = os.getenv("API_KEY") | |
OAI_API_KEY = os.getenv("OPENAI_API_KEY") | |
BASE_URL = os.getenv("OPENAI_BASE_URL", "https://api.openai.com/v1") | |
DEF_MODELS = [ | |
"chatgpt-4o-latest", "gpt-4-0125-preview", "gpt-4-0613", "gpt-4-1106-preview", | |
"gpt-4-turbo-2024-04-09", "gpt-4-turbo-preview", "gpt-4-turbo", "gpt-4", | |
"gpt-4o-2024-05-13", "gpt-4o-2024-08-06", "gpt-4o-2024-11-20", | |
"gpt-4o-mini-2024-07-18", "gpt-4o-mini", "gpt-4o" | |
] | |
models = [] | |
model_list = {} | |
# Exception for API Key handling | |
class APIKeyError(Exception): | |
pass | |
def get_api_key(call: str = 'api_key') -> str: | |
key = API_KEY if call == 'api_key' else (OAI_API_KEY if call == 'oai_api_key' else API_KEY) | |
if ',' in key: | |
selected_key = random.choice(key.split(',')) | |
logger.debug(f"Selected API key: {selected_key}") | |
return selected_key | |
return key | |
def encode_chat(messages: List[dict]) -> str: | |
encoded = "\n".join( | |
f"<|im_start|>{msg['role']}{' [' + msg['name'] + ']' if 'name' in msg else ''}\n{msg['content']}<|end_of_text|>" | |
for msg in messages | |
) | |
logger.debug(f"Encoded chat: {encoded}") | |
return encoded | |
def check_models(): | |
global BASE_URL, API_KEY | |
if API_BASE == "env": | |
try: | |
response = requests.get( | |
f"{BASE_URL}/models", | |
headers={"Authorization": f"Bearer {get_api_key()}"} | |
) | |
response.raise_for_status() | |
data = response.json() | |
if 'data' not in data: | |
logger.warning("No 'data' in response. Falling back to default BASE_URL and API_KEY.") | |
BASE_URL = "https://api.openai.com/v1" | |
API_KEY = OAI_API_KEY | |
else: | |
logger.info("Successfully fetched models from API_BASE.") | |
except requests.RequestException as e: | |
logger.error(f"Error testing API endpoint: {e}. Falling back to default BASE_URL and API_KEY.") | |
BASE_URL = "https://api.openai.com/v1" | |
API_KEY = OAI_API_KEY | |
else: | |
BASE_URL = "https://api.openai.com/v1" | |
API_KEY = OAI_API_KEY | |
logger.info("Using default BASE_URL and OAI_API_KEY.") | |
def load_models(): | |
global models, model_list | |
models = sorted(DEF_MODELS) | |
model_list = { | |
"object": "list", | |
"data": [{"id": model_id, "object": "model", "created": 0, "owned_by": "system"} for model_id in models] | |
} | |
logger.info(f"Loaded models: {models}") | |
def handle_api_keys(): | |
global API_KEY | |
valid_keys = [] | |
keys = API_KEY.split(',') if ',' in API_KEY else [API_KEY] | |
for key in keys: | |
try: | |
response = requests.get( | |
f"{BASE_URL}/models", | |
headers={"Authorization": f"Bearer {key.strip()}"} | |
) | |
response.raise_for_status() | |
if 'data' in response.json(): | |
valid_keys.append(key.strip()) | |
logger.debug(f"Valid API key: {key.strip()}") | |
else: | |
logger.warning(f"API key {key.strip()} is invalid.") | |
except requests.RequestException as e: | |
logger.error(f"API key {key.strip()} is not valid or an error occurred: {e}") | |
if not valid_keys: | |
raise APIKeyError("No valid API keys are available.") | |
API_KEY = ",".join(valid_keys) | |
logger.info(f"Using API keys: {API_KEY}") | |
def moderate(messages: List[dict]) -> Optional[dict]: | |
try: | |
response = requests.post( | |
f"{BASE_URL}/moderations", | |
headers={ | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {get_api_key('api_key')}" | |
}, | |
json={"input": encode_chat(messages)} | |
) | |
response.raise_for_status() | |
moderation_result = response.json() | |
logger.debug(f"Moderation result: {moderation_result}") | |
except requests.RequestException as e: | |
logger.error(f"Moderation request failed: {e}. Trying fallback URL.") | |
try: | |
response = requests.post( | |
"https://api.openai.com/v1/moderations", | |
headers={ | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {get_api_key('oai_api_key')}" | |
}, | |
json={"input": encode_chat(messages)} | |
) | |
response.raise_for_status() | |
moderation_result = response.json() | |
logger.debug(f"Moderation result from fallback: {moderation_result}") | |
except requests.RequestException as ex: | |
logger.error(f"Fallback moderation request failed: {ex}") | |
return None | |
try: | |
if isinstance(moderation_result, list): | |
flagged = any(result.get("flagged", False) for result in moderation_result) | |
else: | |
flagged = moderation_result.get("flagged", False) | |
if flagged: | |
logger.info("Content flagged by moderation.") | |
return moderation_result | |
except KeyError as e: | |
logger.error(f"Key error during moderation processing: {e}") | |
return None | |
return None | |
async def stream_chat(params: dict): | |
async with aiohttp.ClientSession() as session: | |
for attempt, url in enumerate([f"{BASE_URL}/chat/completions", "https://api.openai.com/v1/chat/completions"], start=1): | |
try: | |
async with session.post( | |
url, | |
headers={ | |
"Authorization": f"Bearer {get_api_key('api_key' if attempt == 1 else 'oai_api_key')}", | |
"Content-Type": "application/json" | |
}, | |
json=params, | |
timeout=30 | |
) as resp: | |
resp.raise_for_status() | |
buffer = "" | |
async for chunk in resp.content: | |
if chunk: | |
buffer += chunk.decode('utf-8') | |
while '\n' in buffer: | |
line, buffer = buffer.split('\n', 1) | |
line = line.strip() | |
if line.startswith("data: "): | |
line = line[6:].strip() | |
if line == "[DONE]": | |
return | |
if not line: | |
continue | |
try: | |
message = json.loads(line) | |
yield message | |
except json.JSONDecodeError: | |
continue | |
break | |
except aiohttp.ClientError as e: | |
logger.error(f"Stream chat request failed on attempt {attempt}: {e}") | |
if attempt == 2: | |
return | |
def rnd(length: int = 8) -> str: | |
result = ''.join(random.choices(string.ascii_letters + string.digits, k=length)) | |
logger.debug(f"Generated random string: {result}") | |
return result | |
async def respond( | |
message: str, | |
history: List[Tuple[str, str]], | |
model_name: str, | |
max_tokens: int, | |
temperature: float, | |
top_p: float, | |
) -> AsyncGenerator[str, None]: | |
messages = [] | |
for user_msg, assistant_msg in history: | |
if user_msg: | |
messages.append({"role": "user", "content": user_msg}) | |
if assistant_msg: | |
messages.append({"role": "assistant", "content": assistant_msg}) | |
if message: | |
messages.append({"role": "user", "content": message}) | |
moderation = moderate(messages) | |
if moderation: | |
reasons = [] | |
categories = moderation[0].get('categories', {}) if isinstance(moderation, list) else moderation.get('categories', {}) | |
for category, flagged in categories.items(): | |
if flagged: | |
reasons.append(category) | |
if reasons: | |
response = "[MODERATION] I'm sorry, but I can't assist with that.\n\nReasons:\n```\n" + "\n".join(f"{i+1}. {reason}" for i, reason in enumerate(reasons)) + "\n```" | |
else: | |
response = "[MODERATION] I'm sorry, but I can't assist with that." | |
logger.info("Message flagged by moderation.") | |
yield response | |
return | |
params = { | |
"model": model_name, | |
"messages": messages, | |
"max_tokens": max_tokens, | |
"temperature": temperature, | |
"top_p": top_p, | |
"user": rnd(), | |
"stream": True | |
} | |
try: | |
response_text = "" | |
async for token in stream_chat(params): | |
if token and 'choices' in token and len(token['choices']) > 0: | |
delta = token['choices'][0].get('delta', {}) | |
content = delta.get("content", delta.get("refusal", "")) | |
response_text += content | |
yield response_text | |
if not response_text: | |
yield "I apologize, but I was unable to generate a response. Please try again." | |
except Exception as e: | |
logger.error(f"Error during chat response generation: {e}") | |
yield "I encountered an error while processing your request. Please try again later." | |
def create_gradio_interface() -> gr.ChatInterface: | |
return gr.ChatInterface( | |
respond, | |
title="gpt-4o-mini", | |
description="The chat is back online for a not-so-long time.", | |
additional_inputs=[ | |
gr.Dropdown(choices=models, value="gpt-4o-mini", label="Model"), | |
gr.Slider(minimum=1, maximum=4096, value=4096, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.05, label="Temperature"), | |
gr.Slider(minimum=0.05, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
], | |
css="footer{display:none !important}", | |
head="""<script> | |
if(!confirm("By using our application, which integrates with OpenAI's API, you acknowledge and agree to the following terms regarding the data you provide:\\n\\n1. Data Collection: This application may log the following data through the Gradio endpoint or the API endpoint: message requests (including messages, responses, model settings, and images sent along with the messages), images that were generated (including only the prompt and the image), search tool calls (including query, search results, summaries, and output responses), and moderation checks (including input and output).\\n2. Data Retention and Removal: Data is retained until further notice or until a specific request for removal is made.\\n3. Data Usage: The collected data may be used for various purposes, including but not limited to, administrative review of logs, AI training, and publication as a dataset.\\n4. Privacy: Please avoid sharing any personal information.\\n\\nBy continuing to use our application, you explicitly consent to the collection, use, and potential sharing of your data as described above. If you disagree with our data collection, usage, and sharing practices, we advise you not to use our application.")) location.href="/declined"; | |
</script>""" | |
) | |
def create_fastapi_app() -> FastAPI: | |
app = FastAPI() | |
def declined(): | |
return HTMLResponse(content=""" | |
<html> | |
<head> | |
<title>Declined</title> | |
</head> | |
<body> | |
<p>Ok, you can go back to Hugging Face. I just didn't have any idea how to handle decline so you are redirected here.</p><br/> | |
<a href="/">Go back</a> | |
</body> | |
</html> | |
""") | |
gradio_app = create_gradio_interface() | |
app = gr.mount_gradio_app(app, gradio_app, path="/") | |
return app | |
class ArgParser(argparse.ArgumentParser): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.add_argument("-s", "--server", type=str, default="0.0.0.0", help="Server host.") | |
self.add_argument("-p", "--port", type=int, default=7860, help="Server port.") | |
self.add_argument("-d", "--dev", action="store_true", help="Run in development mode.") | |
self.args = self.parse_args(sys.argv[1:]) | |
def main(): | |
try: | |
handle_api_keys() | |
load_models() | |
check_models() | |
except APIKeyError as e: | |
logger.critical(e) | |
sys.exit(1) | |
app = create_fastapi_app() | |
args = ArgParser().args | |
uvicorn.run( | |
app, | |
host=args.server, | |
port=args.port, | |
reload=args.dev | |
) | |
if __name__ == "__main__": | |
main() | |