File size: 13,448 Bytes
6a0ec6a
 
1767e22
eff3c87
692ea71
eff3c87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91561ce
a573881
 
eff3c87
a573881
 
 
 
 
 
 
 
 
 
 
 
 
eff3c87
 
 
 
a573881
 
 
f776bb6
08d132d
f776bb6
 
 
08d132d
 
 
 
 
 
 
 
 
f776bb6
08d132d
 
 
f776bb6
 
08d132d
f776bb6
08d132d
f776bb6
 
 
 
 
 
 
 
 
 
 
 
08d132d
f776bb6
 
08d132d
e465450
9002697
e465450
28200f6
5a55ea7
e465450
 
 
91561ce
6d10b4f
 
 
e465450
6d10b4f
e465450
 
 
 
 
 
 
6d10b4f
e465450
 
3df9eeb
e465450
 
 
 
08d132d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3df9eeb
08d132d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eff3c87
08d132d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eff3c87
08d132d
eff3c87
08d132d
8dc7735
 
08d132d
f776bb6
 
 
 
 
 
 
 
 
 
 
08d132d
8dc7735
 
 
 
 
 
 
 
 
913c11d
8dc7735
913c11d
 
 
8dc7735
08d132d
eff3c87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d870c12
fed63c4
6d10b4f
811c7ec
0f6a8d0
811c7ec
 
 
 
 
 
 
 
 
cf110d3
1aeb4b3
 
 
 
5a7d50d
12eb71a
 
811c7ec
 
 
 
 
 
 
3df9eeb
811c7ec
6d10b4f
91561ce
3df9eeb
 
 
eff3c87
 
 
3df9eeb
 
 
 
 
 
91561ce
 
 
3df9eeb
 
5a55ea7
d870c12
811c7ec
 
3df9eeb
6d10b4f
3df9eeb
6d10b4f
3df9eeb
6d10b4f
3df9eeb
6d10b4f
d870c12
 
 
 
eff3c87
 
 
 
 
 
 
 
 
d870c12
 
3df9eeb
 
 
811c7ec
6a0ec6a
 
3df9eeb
 
6ed45c1
3df9eeb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
import os
import gradio as gr
import pandas as pd
from sqlalchemy import create_engine, text
from langchain.tools import tool
from code_agent import CodeAgent
from hf_api_model import HfApiModel

# Initialize SQLite database engine
engine = create_engine('sqlite:///data.db')

def clear_database():
    """
    Clear all tables from the database.
    """
    with engine.connect() as con:
        # Get all table names
        tables = con.execute(text(
            "SELECT name FROM sqlite_master WHERE type='table' AND name NOT LIKE 'sqlite_%'"
        )).fetchall()
        
        # Drop each table
        for table in tables:
            con.execute(text(f"DROP TABLE IF EXISTS {table[0]}"))

def create_dynamic_table(df):
    """
    Create a table dynamically based on DataFrame structure.
    """
    df.to_sql('data_table', engine, index=False, if_exists='replace')
    return 'data_table'

def insert_rows_into_table(records, table_name):
    """
    Insert records into the specified table.
    """
    with engine.begin() as conn:
        for record in records:
            conn.execute(
                text(f"INSERT INTO {table_name} ({', '.join(record.keys())}) VALUES ({', '.join(['?' for _ in record])})")
                .bindparams(*record.values())
            )

def get_data_table():
    """
    Get the current data table as a DataFrame.
    """
    try:
        # Get list of tables
        with engine.connect() as con:
            tables = con.execute(text(
                "SELECT name FROM sqlite_master WHERE type='table' AND name NOT LIKE 'sqlite_%'"
            )).fetchall()
            
        if not tables:
            return pd.DataFrame()
            
        # Use the first table found
        table_name = tables[0][0]
        
        # Read the table into a DataFrame
        return pd.read_sql_table(table_name, engine)
        
    except Exception as e:
        return pd.DataFrame({"Error": [str(e)]})

def get_table_info():
    """
    Gets the current table name and column information.
    Returns:
        tuple: (table_name, list of column names, column info)
    """
    try:
        # Get list of tables
        with engine.connect() as con:
            tables = con.execute(text(
                "SELECT name FROM sqlite_master WHERE type='table' AND name NOT LIKE 'sqlite_%'"
            )).fetchall()
            
        if not tables:
            return None, [], {}
            
        # Use the first table found
        table_name = tables[0][0]
        
        # Get column information
        with engine.connect() as con:
            columns = con.execute(text(f"PRAGMA table_info({table_name})")).fetchall()
            
        # Extract column names and types
        column_names = [col[1] for col in columns]
        column_info = {
            col[1]: {
                'type': col[2],
                'is_primary': bool(col[5])
            }
            for col in columns
        }
        
        return table_name, column_names, column_info
        
    except Exception as e:
        print(f"Error getting table info: {str(e)}")
        return None, [], {}

def process_sql_file(file_path):
    """
    Process an SQL file and execute its contents.
    """
    try:
        # Read the SQL file
        with open(file_path, 'r') as file:
            sql_content = file.read()
            
        # Replace AUTO_INCREMENT with AUTOINCREMENT for SQLite compatibility
        sql_content = sql_content.replace('AUTO_INCREMENT', 'AUTOINCREMENT')
            
        # Split into individual statements
        statements = [stmt.strip() for stmt in sql_content.split(';') if stmt.strip()]
        
        # Clear existing database
        clear_database()
        
        # Execute each statement
        with engine.begin() as conn:
            for statement in statements:
                if statement.strip():
                    conn.execute(text(statement))
                    
        return True, "SQL file successfully executed!"
        
    except Exception as e:
        return False, f"Error processing SQL file: {str(e)}"

def process_csv_file(file_path):
    """
    Process a CSV file and load it into the database.
    """
    try:
        # Read the CSV file
        df = pd.read_csv(file_path)
        
        if len(df.columns) == 0:
            return False, "Error: File contains no columns"
            
        # Clear existing database and create new table
        clear_database()
        table = create_dynamic_table(df)
        
        # Convert DataFrame to list of dictionaries and insert
        records = df.to_dict('records')
        insert_rows_into_table(records, table)
        
        return True, "CSV file successfully loaded!"
        
    except Exception as e:
        return False, f"Error processing CSV file: {str(e)}"

def process_uploaded_file(file):
    """
    Process the uploaded file (either SQL or CSV).
    """
    try:
        if file is None:
            return False, "Please upload a file."
            
        # Get file extension
        file_ext = os.path.splitext(file)[1].lower()
        
        if file_ext == '.sql':
            return process_sql_file(file)
        elif file_ext == '.csv':
            return process_csv_file(file)
        else:
            return False, "Error: Unsupported file type. Please upload either a .sql or .csv file."
            
    except Exception as e:
        return False, f"Error processing file: {str(e)}"

@tool
def sql_engine(query: str) -> str:
    """
    Executes an SQL query and returns formatted results.
    
    Args:
        query: The SQL query string to execute on the database. Must be a valid SELECT query.

    Returns:
        str: The formatted query results as a string.
    """
    try:
        with engine.connect() as con:
            rows = con.execute(text(query)).fetchall()

        if not rows:
            return "No results found."

        if len(rows) == 1 and len(rows[0]) == 1:
            return str(rows[0][0])

        return "\n".join([", ".join(map(str, row)) for row in rows])

    except Exception as e:
        return f"Error: {str(e)}"

def process_sql_result(generated_sql, table_name, column_names):
    """
    Process and execute the generated SQL query.
    """
    # Remove any trailing semicolons
    generated_sql = generated_sql.strip().rstrip(';')

    # Fix table names
    for wrong_name in ['table_name', 'customers', 'main']:
        if wrong_name in generated_sql:
            generated_sql = generated_sql.replace(wrong_name, table_name)
    
    # Add quotes around column names that need them
    for col in column_names:
        if ' ' in col:  # If column name contains spaces
            if col in generated_sql and f'"{col}"' not in generated_sql and f'`{col}`' not in generated_sql:
                generated_sql = generated_sql.replace(col, f'"{col}"')

    try:
        # Execute the query
        result = sql_engine(generated_sql)
        
        # Try to format as number if possible
        try:
            float_result = float(result)
            return f"{float_result:,.0f}"  # Format with commas, no decimals
        except ValueError:
            return result
            
    except Exception as e:
        if str(e).startswith("(sqlite3.OperationalError) near"):
            # If it's a SQL syntax error, return the raw result
            return generated_sql
        return f"Error executing query: {str(e)}"

def query_sql(user_query: str, show_full: bool) -> tuple:
    """
    Converts natural language input to an SQL query using CodeAgent.
    Returns both short and full responses based on switch state.
    """
    table_name, column_names, column_info = get_table_info()
    
    if not table_name:
        return "Error: No data table exists. Please upload a file first.", ""

    schema_info = (
        f"The database has a table named '{table_name}' with the following columns:\n"
        + "\n".join([
            f"- {col} ({info['type']}{' primary key' if info['is_primary'] else ''})"
            for col, info in column_info.items()
        ])
        + "\n\nGenerate a valid SQL SELECT query using ONLY these column names.\n"
        "The table name is '" + table_name + "'.\n"
        "If column names contain spaces, they must be quoted.\n"
        "You can use aggregate functions like COUNT, AVG, SUM, etc.\n"
        "DO NOT explain your reasoning, and DO NOT return anything other than the SQL query itself."
    )

    # Get full response from the agent
    full_response = agent.run(f"{schema_info} Convert this request into SQL: {user_query}")
    
    # Process the short response as before
    if not isinstance(full_response, str):
        return "Error: Invalid query generated", ""

    # Extract and process SQL for short response
    generated_sql = full_response
    if generated_sql.isnumeric():
        short_response = generated_sql
    else:
        sql_lines = [line for line in generated_sql.split('\n') if 'select' in line.lower()]
        if sql_lines:
            generated_sql = sql_lines[0]
        
        # Process the SQL query and get the short result
        short_response = process_sql_result(generated_sql, table_name, column_names)

    return short_response, full_response

def handle_upload(file_obj):
    if file_obj is None:
        return (
            "Please upload a file.",
            None,
            "No schema available",
            gr.update(visible=True),
            gr.update(visible=False)
        )
    
    success, message = process_uploaded_file(file_obj)
    if success:
        df = get_data_table()
        _, _, column_info = get_table_info()
        schema = "\n".join([
            f"- {col} ({info['type']}){'primary key' if info['is_primary'] else ''}"
            for col, info in column_info.items()
        ])
        return (
            message,
            df,
            f"### Current Schema:\n```\n{schema}\n```",
            gr.update(visible=False),
            gr.update(visible=True)
        )
    return (
        message,
        None,
        "No schema available",
        gr.update(visible=True),
        gr.update(visible=False)
    )

def refresh_data():
    df = get_data_table()
    _, _, column_info = get_table_info()
    schema = "\n".join([
        f"- {col} ({info['type']}){'primary key' if info['is_primary'] else ''}"
        for col, info in column_info.items()
    ])
    return df, f"### Current Schema:\n```\n{schema}\n```"

# Initialize the CodeAgent
agent = CodeAgent(
    tools=[sql_engine],
    model=HfApiModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct"),
)

# Create the Gradio interface
with gr.Blocks() as demo:
    with gr.Group() as upload_group:
        gr.Markdown("""
        # CSVAgent
        Upload your data file to begin.
        
        ### Supported File Types:
        - CSV (.csv): CSV file with headers that will be automatically converted to a table
        
        ### CSV Requirements:
        - Must include headers
        - First column will be used as the primary key
        - Column types will be automatically detected
        - Sample CSV Files: https://github.com/datablist/sample-csv-files
        ### Based on ZennyKenny's SqlAgent

        ### SQL to CSV File Conversion
        https://tableconvert.com/sql-to-csv
        - Will work on the handling of SQL files soon.
        
        ### Try it out! Upload a CSV file and then ask a question about the data!
        """)
        
        file_input = gr.File(
            label="Upload Data File",
            file_types=[".csv", ".sql"],
            type="filepath"
        )
        status = gr.Textbox(label="Status", interactive=False)

    with gr.Group(visible=False) as query_group:
        with gr.Row():
            with gr.Column(scale=1):
                user_input = gr.Textbox(label="Ask a question about the data")
                query_output = gr.Textbox(label="Result")
                # Add the switch and secondary result box
                full_response_switch = gr.Switch(label="Show Full Response", value=False)
                full_response_output = gr.Textbox(label="Full Response", visible=False)
            
            with gr.Column(scale=2):
                gr.Markdown("### Current Data")
                data_table = gr.Dataframe(
                    value=None,
                    label="Data Table",
                    interactive=False
                )
        
        schema_display = gr.Markdown(value="Loading schema...")
        refresh_btn = gr.Button("Refresh Data")

    # Event handlers
    file_input.upload(
        fn=handle_upload,
        inputs=file_input,
        outputs=[
            status,
            data_table,
            schema_display,
            upload_group,
            query_group
        ]
    )

    user_input.change(
        fn=query_sql,
        inputs=[user_input, full_response_switch],
        outputs=[query_output, full_response_output]
    )
    
    # Add switch change event to control visibility of full response
    full_response_switch.change(
        fn=lambda x: gr.update(visible=x),
        inputs=full_response_switch,
        outputs=full_response_output
    )
    
    refresh_btn.click(
        fn=refresh_data,
        outputs=[data_table, schema_display]
    )

if __name__ == "__main__":
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860
    )