Spaces:
Running
Running
File size: 11,666 Bytes
6a0ec6a 91561ce 6a0ec6a 91561ce 1767e22 91561ce a573881 f776bb6 08d132d f776bb6 08d132d f776bb6 08d132d f776bb6 08d132d f776bb6 08d132d f776bb6 08d132d f776bb6 08d132d e465450 9002697 e465450 28200f6 5a55ea7 e465450 91561ce 6d10b4f e465450 6d10b4f e465450 6d10b4f e465450 3df9eeb e465450 08d132d 3df9eeb 08d132d f776bb6 08d132d f776bb6 08d132d f776bb6 6c1c88d 08d132d 8dc7735 08d132d 8dc7735 08d132d 8dc7735 08d132d 8dc7735 08d132d f776bb6 08d132d 8dc7735 08d132d d870c12 fed63c4 6d10b4f 811c7ec 3df9eeb 811c7ec 6d10b4f 91561ce 3df9eeb 91561ce 3df9eeb 5a55ea7 3df9eeb a573881 3df9eeb 6d10b4f a573881 3df9eeb a573881 3df9eeb 811c7ec 3df9eeb 6d10b4f a573881 d870c12 811c7ec 3df9eeb 6d10b4f 3df9eeb 6d10b4f 3df9eeb 6d10b4f 3df9eeb 6d10b4f d870c12 3df9eeb d870c12 3df9eeb 811c7ec 6a0ec6a 3df9eeb 6ed45c1 3df9eeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
import os
import gradio as gr
from sqlalchemy import text
from smolagents import tool, CodeAgent, HfApiModel
import spaces
import pandas as pd
from database import (
engine,
create_dynamic_table,
clear_database,
insert_rows_into_table,
get_table_schema
)
def get_data_table():
"""
Fetches all data from the current table and returns it as a Pandas DataFrame.
"""
try:
# Get list of tables
with engine.connect() as con:
tables = con.execute(text(
"SELECT name FROM sqlite_master WHERE type='table' AND name NOT LIKE 'sqlite_%'"
)).fetchall()
if not tables:
return pd.DataFrame()
# Use the first table found
table_name = tables[0][0]
with engine.connect() as con:
result = con.execute(text(f"SELECT * FROM {table_name}"))
rows = result.fetchall()
if not rows:
return pd.DataFrame()
columns = result.keys()
df = pd.DataFrame(rows, columns=columns)
return df
except Exception as e:
return pd.DataFrame({"Error": [str(e)]})
def get_table_info():
"""
Gets the current table name and column information.
Returns:
tuple: (table_name, list of column names, column info)
"""
try:
# Get list of tables
with engine.connect() as con:
tables = con.execute(text(
"SELECT name FROM sqlite_master WHERE type='table' AND name NOT LIKE 'sqlite_%'"
)).fetchall()
if not tables:
return None, [], {}
# Use the first table found
table_name = tables[0][0]
# Get column information
with engine.connect() as con:
columns = con.execute(text(f"PRAGMA table_info({table_name})")).fetchall()
# Extract column names and types
column_names = [col[1] for col in columns]
column_info = {
col[1]: {
'type': col[2],
'is_primary': bool(col[5])
}
for col in columns
}
return table_name, column_names, column_info
except Exception as e:
print(f"Error getting table info: {str(e)}")
return None, [], {}
def process_sql_file(file_path):
"""
Process an SQL file and execute its contents.
"""
try:
# Read the SQL file
with open(file_path, 'r') as file:
sql_content = file.read()
# Replace AUTO_INCREMENT with AUTOINCREMENT for SQLite compatibility
sql_content = sql_content.replace('AUTO_INCREMENT', 'AUTOINCREMENT')
# Split into individual statements
statements = [stmt.strip() for stmt in sql_content.split(';') if stmt.strip()]
# Clear existing database
clear_database()
# Execute each statement
with engine.begin() as conn:
for statement in statements:
if statement.strip():
conn.execute(text(statement))
return True, "SQL file successfully executed!"
except Exception as e:
return False, f"Error processing SQL file: {str(e)}"
def process_csv_file(file_path):
"""
Process a CSV file and load it into the database.
"""
try:
# Read the CSV file
df = pd.read_csv(file_path)
if len(df.columns) == 0:
return False, "Error: File contains no columns"
# Clear existing database and create new table
clear_database()
table = create_dynamic_table(df)
# Convert DataFrame to list of dictionaries and insert
records = df.to_dict('records')
insert_rows_into_table(records, table)
return True, "CSV file successfully loaded!"
except Exception as e:
return False, f"Error processing CSV file: {str(e)}"
def process_uploaded_file(file):
"""
Process the uploaded file (either SQL or CSV).
"""
try:
if file is None:
return False, "Please upload a file."
# Get file extension
file_ext = os.path.splitext(file)[1].lower()
if file_ext == '.sql':
return process_sql_file(file)
elif file_ext == '.csv':
return process_csv_file(file)
else:
return False, "Error: Unsupported file type. Please upload either a .sql or .csv file."
except Exception as e:
return False, f"Error processing file: {str(e)}"
@tool
def sql_engine(query: str) -> str:
"""
Executes an SQL query and returns formatted results.
Args:
query: The SQL query string to execute on the database. Must be a valid SELECT query.
Returns:
str: The formatted query results as a string.
"""
try:
with engine.connect() as con:
rows = con.execute(text(query)).fetchall()
if not rows:
return "No results found."
if len(rows) == 1 and len(rows[0]) == 1:
return str(rows[0][0])
return "\n".join([", ".join(map(str, row)) for row in rows])
except Exception as e:
return f"Error: {str(e)}"
agent = CodeAgent(
tools=[sql_engine],
model=HfApiModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct"),
)
def query_sql(user_query: str) -> str:
"""
Converts natural language input to an SQL query using CodeAgent.
"""
# Get current table information
table_name, column_names, column_info = get_table_info()
if not table_name:
return "Error: No data table exists. Please upload a file first."
# Create schema information with actual column names
schema_info = (
f"The database has a table named '{table_name}' with the following columns:\n"
+ "\n".join([
f"- {col} ({info['type']}){' primary key' if info['is_primary'] else ''}"
for col, info in column_info.items()
])
+ "\n\nGenerate a valid SQL SELECT query using ONLY these column names.\n"
"The table name is '" + table_name + "'.\n"
"If column names contain spaces, they must be quoted.\n"
"You can use aggregate functions like COUNT, AVG, SUM, etc.\n"
"DO NOT explain your reasoning, and DO NOT return anything other than the SQL query itself."
)
# Get the SQL query from the agent
generated_sql = agent.run(f"{schema_info} Convert this request into SQL: {user_query}")
# Clean up and validate the SQL
if not isinstance(generated_sql, str):
return f"Error: Invalid query generated"
# Extract just the SQL query if there's additional text
sql_lines = [line for line in generated_sql.split('\n') if 'select' in line.lower()]
if sql_lines:
generated_sql = sql_lines[0]
# Remove any trailing semicolons
generated_sql = generated_sql.strip().rstrip(';')
# Fix table names
for wrong_name in ['table_name', 'customers', 'main']:
if wrong_name in generated_sql:
generated_sql = generated_sql.replace(wrong_name, table_name)
# Add quotes around column names that need them
for col in column_names:
if ' ' in col: # If column name contains spaces
if col in generated_sql and f'"{col}"' not in generated_sql and f'`{col}`' not in generated_sql:
generated_sql = generated_sql.replace(col, f'"{col}"')
try:
# Execute the query
result = sql_engine(generated_sql)
# Try to format as number if possible
try:
float_result = float(result)
return f"{float_result:,.0f}" # Format with commas, no decimals
except ValueError:
return result
except Exception as e:
return f"Error executing query: {str(e)}"
# Create the Gradio interface
with gr.Blocks() as demo:
with gr.Group() as upload_group:
gr.Markdown("""
# Data Query Interface
Upload your data file to begin.
### Supported File Types:
- SQL (.sql): SQL file containing CREATE TABLE and INSERT statements
- CSV (.csv): CSV file with headers that will be automatically converted to a table
### CSV Requirements:
- Must include headers
- First column will be used as the primary key
- Column types will be automatically detected
### SQL Requirements:
- Must contain valid SQL statements
- Statements must be separated by semicolons
- Should include CREATE TABLE and data insertion statements
""")
file_input = gr.File(
label="Upload Data File",
file_types=[".csv", ".sql"],
type="filepath"
)
status = gr.Textbox(label="Status", interactive=False)
with gr.Group(visible=False) as query_group:
with gr.Row():
with gr.Column(scale=1):
user_input = gr.Textbox(label="Ask a question about the data")
query_output = gr.Textbox(label="Result")
with gr.Column(scale=2):
gr.Markdown("### Current Data")
data_table = gr.Dataframe(
value=None,
label="Data Table",
interactive=False
)
schema_display = gr.Markdown(value="Loading schema...")
refresh_btn = gr.Button("Refresh Data")
def handle_upload(file_obj):
if file_obj is None:
return (
"Please upload a file.",
None,
"No schema available",
gr.update(visible=True),
gr.update(visible=False)
)
success, message = process_uploaded_file(file_obj)
if success:
df = get_data_table()
_, _, column_info = get_table_info()
schema = "\n".join([
f"- {col} ({info['type']}){' primary key' if info['is_primary'] else ''}"
for col, info in column_info.items()
])
return (
message,
df,
f"### Current Schema:\n```\n{schema}\n```",
gr.update(visible=False),
gr.update(visible=True)
)
return (
message,
None,
"No schema available",
gr.update(visible=True),
gr.update(visible=False)
)
def refresh_data():
df = get_data_table()
_, _, column_info = get_table_info()
schema = "\n".join([
f"- {col} ({info['type']}){' primary key' if info['is_primary'] else ''}"
for col, info in column_info.items()
])
return df, f"### Current Schema:\n```\n{schema}\n```"
# Event handlers
file_input.upload(
fn=handle_upload,
inputs=file_input,
outputs=[
status,
data_table,
schema_display,
upload_group,
query_group
]
)
user_input.change(
fn=query_sql,
inputs=user_input,
outputs=query_output
)
refresh_btn.click(
fn=refresh_data,
outputs=[data_table, schema_display]
)
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860
) |