Spaces:
Running
Running
import os | |
import gradio as gr | |
from sqlalchemy import text | |
from smolagents import tool, CodeAgent, HfApiModel | |
import spaces | |
import pandas as pd | |
from database import engine, receipts | |
import pandas as pd | |
def get_receipts_table(): | |
""" | |
Fetches all data from the 'receipts' table and returns it as a Pandas DataFrame. | |
Returns: | |
A Pandas DataFrame containing all receipt data. | |
""" | |
try: | |
with engine.connect() as con: | |
result = con.execute(text("SELECT * FROM receipts")) | |
rows = result.fetchall() | |
if not rows: | |
return pd.DataFrame(columns=["receipt_id", "customer_name", "price", "tip"]) | |
# Convert rows into a DataFrame | |
df = pd.DataFrame(rows, columns=["receipt_id", "customer_name", "price", "tip"]) | |
return df | |
except Exception as e: | |
return pd.DataFrame({"Error": [str(e)]}) # Return error message in DataFrame format | |
def sql_engine(query: str) -> str: | |
""" | |
Executes an SQL query on the 'receipts' table and returns formatted results. | |
Args: | |
query: The SQL query to execute. | |
Returns: | |
Query result as a formatted string. | |
""" | |
try: | |
with engine.connect() as con: | |
rows = con.execute(text(query)).fetchall() | |
if not rows: | |
return "No results found." | |
if len(rows) == 1 and len(rows[0]) == 1: | |
return str(rows[0][0]) # Convert numerical result to string | |
return "\n".join([", ".join(map(str, row)) for row in rows]) | |
except Exception as e: | |
return f"Error: {str(e)}" | |
def query_sql(user_query: str) -> str: | |
""" | |
Converts natural language input to an SQL query using CodeAgent | |
and returns the execution results. | |
Args: | |
user_query: The user's request in natural language. | |
Returns: | |
The query result from the database as a formatted string. | |
""" | |
schema_info = ( | |
"The database has a table named 'receipts' with the following schema:\n" | |
"- receipt_id (INTEGER, primary key)\n" | |
"- customer_name (VARCHAR(16))\n" | |
"- price (FLOAT)\n" | |
"- tip (FLOAT)\n" | |
"Generate a valid SQL SELECT query using ONLY these column names.\n" | |
"DO NOT explain your reasoning, and DO NOT return anything other than the SQL query itself." | |
) | |
generated_sql = agent.run(f"{schema_info} Convert this request into SQL: {user_query}") | |
if not isinstance(generated_sql, str): | |
return f"{generated_sql}" # Handle unexpected numerical result | |
print(f"{generated_sql}") | |
if not generated_sql.strip().lower().startswith(("select", "show", "pragma")): | |
return "Error: Only SELECT queries are allowed." | |
result = sql_engine(generated_sql) | |
print(f"{result}") | |
try: | |
float_result = float(result) | |
return f"{float_result:.2f}" | |
except ValueError: | |
return result | |
def handle_query(user_input: str) -> str: | |
""" | |
Calls query_sql, captures the output, and directly returns it to the UI. | |
Args: | |
user_input: The user's natural language question. | |
Returns: | |
The SQL query result as a plain string to be displayed in the UI. | |
""" | |
return query_sql(user_input) | |
agent = CodeAgent( | |
tools=[sql_engine], | |
model=HfApiModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct"), | |
) | |
with gr.Blocks() as demo: | |
gr.Markdown("## Plain Text Query Interface") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
user_input = gr.Textbox(label="Ask a question about the data") | |
query_output = gr.Textbox(label="Result") | |
with gr.Column(scale=2): | |
gr.Markdown("### Receipts Table") | |
receipts_table = gr.Dataframe(value=get_receipts_table(), label="Receipts Table") | |
user_input.change(fn=handle_query, inputs=user_input, outputs=query_output) | |
demo.load(fn=get_receipts_table, outputs=receipts_table) | |
if __name__ == "__main__": | |
demo.launch(server_name="0.0.0.0", server_port=7860, share=True) | |