Queensly commited on
Commit
3f7d4b3
·
1 Parent(s): 54297c5

Uploaded required files

Browse files
Files changed (6) hide show
  1. app.py +108 -0
  2. full_pipeline.pkl +3 -0
  3. logistic_reg_class_model.pkl +3 -0
  4. requirements.txt +11 -0
  5. theme.py +3 -0
  6. utils.py +28 -0
app.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pickle
3
+ from gradio.themes.base import Base
4
+ # import time
5
+ import pandas as pd
6
+ import numpy as np
7
+ from utils import create_new_columns, create_processed_dataframe
8
+ def tenure_values():
9
+ cols = ['0-2', '3-5', '6-8', '9-11', '12-14', '15-17', '18-20', '21-23', '24-26', '27-29', '30-32', '33-35', '36-38', '39-41', '42-44', '45-47', '48-50', '51-53', '54-56', '57-59', '60-62', '63-65', '66-68', '69-71', '72-74']
10
+ return cols
11
+
12
+ def predict_churn(gender, SeniorCitizen, Partner, Dependents, Tenure, PhoneService, MultipleLines, InternetService,
13
+ OnlineSecurity, OnlineBackup, DeviceProtection,TechSupport,StreamingTV, StreamingMovies,
14
+ Contract, PaperlessBilling, PaymentMethod, MonthlyCharges, TotalCharges):
15
+
16
+ data = [gender, SeniorCitizen, Partner, Dependents, Tenure, PhoneService, MultipleLines, InternetService,
17
+ OnlineSecurity, OnlineBackup, DeviceProtection,TechSupport,StreamingTV, StreamingMovies,
18
+ Contract, PaperlessBilling, PaymentMethod, MonthlyCharges, TotalCharges]
19
+
20
+ x = np.array([data])
21
+ dataframe = pd.DataFrame(x, columns=train_features)
22
+ dataframe = dataframe.astype({'MonthlyCharges': 'float', 'TotalCharges': 'float', 'tenure': 'float'})
23
+ create_new_columns(dataframe)
24
+ processed_data = pipeline.transform(dataframe)
25
+ processed_dataframe = create_processed_dataframe(processed_data, dataframe)
26
+ predictions = model.predict_proba(processed_dataframe)
27
+ return round(predictions[0][0], 3), round(predictions[0][1], 3)
28
+
29
+
30
+ theme = gr.themes.Soft(
31
+ primary_hue="orange")
32
+
33
+
34
+ def load_pickle(filename):
35
+ with open(filename, 'rb') as file:
36
+ data = pickle.load(file)
37
+ return data
38
+
39
+ pipeline = load_pickle('full_pipeline.pkl')
40
+ model = load_pickle('logistic_reg_class_model.pkl')
41
+
42
+ train_features = ['gender', 'SeniorCitizen', 'Partner', 'Dependents','tenure', 'PhoneService', 'MultipleLines', 'InternetService',
43
+ 'OnlineSecurity', 'OnlineBackup', 'DeviceProtection','TechSupport','StreamingTV', 'StreamingMovies',
44
+ 'Contract', 'PaperlessBilling', 'PaymentMethod', 'MonthlyCharges', 'TotalCharges']
45
+
46
+
47
+
48
+ # theme = gr.themes.Base()
49
+ with gr.Blocks() as demo:
50
+ gr.Markdown(
51
+ """
52
+ # Welcome Cherished User 👋 !
53
+ ## Customer Churn Classification App
54
+ Start predicting customer churn.
55
+ """)
56
+ with gr.Row():
57
+ gender = gr.Dropdown(label='Gender', choices=['Female', 'Male'])
58
+ Contract = gr.Dropdown(label='Contract', choices=['Month-to-month', 'One year', 'Two year'])
59
+ InternetService = gr.Dropdown(label='Internet Service', choices=['DSL', 'Fiber optic', 'No'])
60
+
61
+ with gr.Accordion('Yes or no'):
62
+
63
+ with gr.Row():
64
+ OnlineSecurity = gr.Radio(label="Online Security", choices=["Yes", "No", "No internet service"])
65
+ OnlineBackup = gr.Radio(label="Online Backup", choices=["Yes", "No", "No internet service"])
66
+ DeviceProtection = gr.Radio(label="Device Protection", choices=["Yes", "No", "No internet service"])
67
+ TechSupport = gr.Radio(label="Tech Support", choices=["Yes", "No", "No internet service"])
68
+ StreamingTV = gr.Radio(label="TV Streaming", choices=["Yes", "No", "No internet service"])
69
+ StreamingMovies = gr.Radio(label="Movie Streaming", choices=["Yes", "No", "No internet service"])
70
+ with gr.Row():
71
+ SeniorCitizen = gr.Radio(label="Senior Citizen", choices=["Yes", "No"])
72
+ Partner = gr.Radio(label="Partner", choices=["Yes", "No"])
73
+ Dependents = gr.Radio(label="Dependents", choices=["Yes", "No"])
74
+ PaperlessBilling = gr.Radio(label="Paperless Billing", choices=["Yes", "No"])
75
+ PhoneService = gr.Radio(label="Phone Service", choices=["Yes", "No"])
76
+ MultipleLines = gr.Radio(label="Multiple Lines", choices=["No phone service", "Yes", "No"])
77
+
78
+ with gr.Row():
79
+ MonthlyCharges = gr.Number(label="Monthly Charges")
80
+ TotalCharges = gr.Number(label="Total Charges")
81
+ Tenure = gr.Number(label='Months of Tenure')
82
+ PaymentMethod = gr.Dropdown(label="Payment Method", choices=["Electronic check", "Mailed check", "Bank transfer (automatic)", "Credit card (automatic)"])
83
+
84
+ submit_button = gr.Button('Prediction')
85
+ print(type([[122, 456]]))
86
+
87
+ with gr.Row():
88
+ with gr.Accordion('Churn Prediction'):
89
+ output1 = gr.Slider(maximum=1,
90
+ minimum=0,
91
+ value=0.0,
92
+ label='Yes')
93
+ output2 = gr.Slider(maximum=1,
94
+ minimum=0,
95
+ value=0.0,
96
+ label='No')
97
+
98
+ submit_button.click(fn=predict_churn, inputs=[gender, SeniorCitizen, Partner, Dependents, Tenure, PhoneService, MultipleLines,
99
+ InternetService, OnlineSecurity, OnlineBackup, DeviceProtection,TechSupport,StreamingTV, StreamingMovies, Contract, PaperlessBilling, PaymentMethod, MonthlyCharges, TotalCharges], outputs=[output1, output2])
100
+
101
+ # if submit_button:
102
+ # print(predict_churn(gender, SeniorCitizen, Partner, Dependents, Tenure, PhoneService, MultipleLines, InternetService,
103
+ # OnlineSecurity, OnlineBackup, DeviceProtection,TechSupport,StreamingTV, StreamingMovies,
104
+ # Contract, PaperlessBilling, PaymentMethod, MonthlyCharges, TotalCharges))
105
+
106
+ #demo = gr.Interface(fn=predict_churn, inputs=[gender, SeniorCitizen, Partner, Dependents, Tenure, PhoneService, MultipleLines,
107
+ # InternetService, OnlineSecurity, OnlineBackup, DeviceProtection,TechSupport,StreamingTV, StreamingMovies, Contract, PaperlessBilling, PaymentMethod, MonthlyCharges, TotalCharges], outputs=['slider', 'slider'], theme=theme)
108
+ demo.launch()
full_pipeline.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8258008cf92ff5e5446c62b85547661f5139b8034dd3408cb61224b44fdf7c1b
3
+ size 3517
logistic_reg_class_model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:909c3db0e63bc22cacd72f7bd76e53e978f8667b32123fb543ff66831b0e9d1a
3
+ size 1301
requirements.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ matplotlib==3.3.4
2
+ numpy==1.20.1
3
+ pandas==1.2.4
4
+ plotly==5.4.0
5
+ seaborn==0.11.1
6
+ scikit-learn==0.24.1
7
+ IPython==7.22.0
8
+ jupyter_client==6.1.12
9
+ jupyter_core==4.7.1
10
+ jupyterlab==3.0.14
11
+ notebook==6.3.0
theme.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ import gradio as gr
2
+
3
+ gr.themes.builder()
utils.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+ import pickle
4
+
5
+
6
+ def load_pickle(filename):
7
+ with open(filename, 'rb') as file:
8
+ data = pickle.load(file)
9
+ return data
10
+
11
+ preprocessor = load_pickle('full_pipeline.pkl')
12
+
13
+
14
+ def create_new_columns(train_data):
15
+ train_data['Monthly Variations'] = (train_data.loc[:, 'TotalCharges']) -((train_data.loc[:, 'tenure'] * train_data.loc[:, 'MonthlyCharges']))
16
+ labels =['{0}-{1}'.format(i, i+2) for i in range(0, 73, 3)]
17
+ train_data['tenure_group'] = pd.cut(train_data['tenure'], bins=(range(0, 78, 3)), right=False, labels=labels)
18
+ train_data.drop(columns=['tenure'], inplace=True)
19
+
20
+
21
+
22
+
23
+ def create_processed_dataframe(processed_data, train_data):
24
+ train_num_cols=train_data.select_dtypes(exclude=['object', 'category']).columns
25
+ cat_features = preprocessor.named_transformers_['categorical']['cat_encoder'].get_feature_names()
26
+ labels = np.concatenate([train_num_cols, cat_features])
27
+ processed_dataframe = pd.DataFrame(processed_data.toarray(), columns=labels)
28
+ return processed_dataframe