Spaces:
Build error
Build error
import pandas as pd | |
import streamlit as st | |
import numpy as np | |
import pickle | |
# streamlit import sklearn | |
from PIL import Image | |
import os | |
import xgboost as xgb | |
# model = xgb.XGBRegressor() | |
# model = model.load_model('export/xg_model.json') | |
# Load the saved components: | |
with open(".\export\dt_model.pkl", "rb") as f: | |
components = pickle.load(f) | |
# Extract the individual components | |
num_imputer = components["num_imputer"] | |
cat_imputer = components["cat_imputer"] | |
encoder = components["encoder"] | |
scaler = components["scaler"] | |
dt_model = components["models"] | |
# Create the app | |
st.set_page_config( | |
layout="wide" | |
) | |
# # Add an image or logo to the app | |
# image = Image.open('copofav.jpg') | |
# # Open the image file | |
# st.image(image) | |
# add app title | |
st.title("SALES PREDICTION APP") | |
# Add some text | |
st.write("Please ENTER the relevant data and CLICK Predict.") | |
# Create the input fields | |
input_data = {} | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
input_data['store_nbr'] = st.slider( | |
"Store Number", min_value=0, step=1, max_value=54) | |
input_data['family'] = st.selectbox("Products Family", ['AUTOMOTIVE', 'BABY CARE', 'BEAUTY', 'BEVERAGES', 'BOOKS', | |
'BREAD/BAKERY', 'CELEBRATION', 'CLEANING', 'DAIRY', 'DELI', 'EGGS', | |
'FROZEN FOODS', 'GROCERY I', 'GROCERY II', 'HARDWARE', | |
'HOME AND KITCHEN I', 'HOME AND KITCHEN II', 'HOME APPLIANCES', | |
'HOME CARE', 'LADIESWEAR', 'LAWN AND GARDEN', 'LINGERIE', | |
'LIQUOR,WINE,BEER', 'MAGAZINES', 'MEATS', 'PERSONAL CARE', | |
'PET SUPPLIES', 'PLAYERS AND ELECTRONICS', 'POULTRY', | |
'PREPARED FOODS', 'PRODUCE', 'SCHOOL AND OFFICE SUPPLIES', | |
'SEAFOOD']) | |
input_data['onpromotion'] = st.number_input( | |
"Discount Amt On Promotion", step=1) | |
with col2: | |
input_data['state'] = st.selectbox("State", ['Santa Elena', 'Pichincha', 'Cotopaxi', 'Chimborazo', 'Imbabura', | |
'Santo Domingo de los Tsachilas', 'Bolivar', 'Tungurahua', | |
'Guayas', 'Los Rios', 'Azuay', 'Loja', 'El Oro', 'Esmeraldas', | |
'Manabi', 'Pastaza']) | |
input_data['store_type'] = st.radio( | |
"Store Type", options=['A', 'B', 'C', 'D', 'E'], horizontal=True) | |
input_data['cluster'] = st.number_input("Cluster", step=1) | |
with col3: | |
input_data['month'] = st.slider("Month", 1, 12) | |
input_data['day'] = st.slider("Day", 1, 31) | |
input_data['dcoilwtico'] = st.slider( | |
"DCOILWTICO", min_value=29, step=1, max_value=108) | |
# Create a button to make a prediction | |
if st.button("Predict"): | |
# Convert the input data to a pandas DataFrame | |
input_df = pd.DataFrame([input_data]) | |
# # categorizing the products | |
# food_families = ['BEVERAGES', 'BREAD/BAKERY', 'FROZEN FOODS', 'MEATS', 'PREPARED FOODS', 'DELI','PRODUCE', 'DAIRY','POULTRY','EGGS','SEAFOOD'] | |
# home_families = ['HOME AND KITCHEN I', 'HOME AND KITCHEN II', 'HOME APPLIANCES'] | |
# clothing_families = ['LINGERIE', 'LADYSWARE'] | |
# grocery_families = ['GROCERY I', 'GROCERY II'] | |
# stationery_families = ['BOOKS', 'MAGAZINES','SCHOOL AND OFFICE SUPPLIES'] | |
# cleaning_families = ['HOME CARE', 'BABY CARE','PERSONAL CARE'] | |
# hardware_families = ['PLAYERS AND ELECTRONICS','HARDWARE'] | |
# others_families = ['AUTOMOTIVE', 'BEAUTY','CELEBRATION', 'LADIESWEAR', 'LAWN AND GARDEN', 'LIQUOR,WINE,BEER', 'PET SUPPLIES'] | |
# # Apply the same preprocessing steps as done during training | |
# input_df['products'] = np.where(input_df['products'].isin(food_families), 'FOODS', input_df['products']) | |
# input_df['products'] = np.where(input_df['products'].isin(home_families), 'HOME', input_df['products']) | |
# input_df['products'] = np.where(input_df['products'].isin(clothing_families), 'CLOTHING', input_df['products']) | |
# input_df['products'] = np.where(input_df['products'].isin(grocery_families), 'GROCERY', input_df['products']) | |
# input_df['products'] = np.where(input_df['products'].isin(stationery_families), 'STATIONERY', input_df['products']) | |
# input_df['products'] = np.where(input_df['products'].isin(cleaning_families), 'CLEANING', input_df['products']) | |
# input_df['products'] = np.where(input_df['products'].isin(hardware_families), 'HARDWARE', input_df['products']) | |
# input_df['products'] = np.where(input_df['products'].isin(others_families), 'OTHERS', input_df['products']) | |
categorical_columns = ['family', 'state', 'store_type'] | |
numerical_columns = ['store_nbr', 'onpromotion', | |
'cluster', 'dcoilwtico', 'month', 'day'] | |
# Impute missing values | |
input_df_cat = input_df[categorical_columns].copy() | |
input_df_num = input_df[numerical_columns].copy() | |
input_df_cat_imputed = cat_imputer.fit_transform(input_df_cat) | |
input_df_num_imputed = num_imputer.fit_transform(input_df_num) | |
# Encode categorical features | |
input_df_cat_encoded = encoder.fit(input_df_cat_imputed) | |
input_df_cat_encoded = pd.DataFrame(encoder.transform(input_df_cat_imputed).toarray(), | |
columns=encoder.get_feature_names_out(categorical_columns)) | |
# Scale numerical features | |
input_df_num_scaled = scaler.fit_transform(input_df_num_imputed) | |
input_df_num_sc = pd.DataFrame( | |
input_df_num_scaled, columns=numerical_columns) | |
# Combine encoded categorical features and scaled numerical features | |
input_df_processed = pd.concat( | |
[input_df_num_sc, input_df_cat_encoded], axis=1) | |
# Make predictions using the trained model | |
predictions = dt_model.predict(input_df_processed) | |
# predictions = model.predict(input_df_processed) | |
# Display the predicted sales value to the user: | |
st.write("Predicted Sales:", predictions[0]) | |