File size: 16,604 Bytes
97151b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d34119
97151b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5fae1c
97151b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b171f6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
import gradio as gr
from http import HTTPStatus
import uuid
from gradio_client import utils as client_utils
import gradio.processing_utils as processing_utils
import base64
from openai import OpenAI
import soundfile as sf
import numpy as np
import io
import os
import modelscope_studio.components.base as ms
import modelscope_studio.components.antd as antd
import oss2
from oss2.credentials import EnvironmentVariableCredentialsProvider

# Voice settings
VOICE_LIST = ['Cherry', 'Ethan', 'Serena', 'Chelsie']
DEFAULT_VOICE = 'Cherry'

# OSS_ACCESS_KEY_ID and OSS_ACCESS_KEY_SECRET。
auth = oss2.ProviderAuthV4(EnvironmentVariableCredentialsProvider())

endpoint = os.getenv("OSS_ENDPOINT")

region = os.getenv("OSS_REGION")

bucket_name = os.getenv("OSS_BUCKET_NAME")

bucket = oss2.Bucket(auth, endpoint, bucket_name, region=region)

default_system_prompt = 'You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech.'

API_KEY = os.environ['API_KEY']

client = OpenAI(
    api_key=API_KEY,
    base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
)

is_modelscope_studio = os.getenv('MODELSCOPE_ENVIRONMENT') == 'studio'


def get_text(text: str, cn_text: str):
    if is_modelscope_studio:
        return cn_text
    return text


def encode_file_to_base64(file_path):
    with open(file_path, "rb") as file:
        mime_type = client_utils.get_mimetype(file_path)
        bae64_data = base64.b64encode(file.read()).decode("utf-8")
        return f"data:{mime_type};base64,{bae64_data}"


def file_path_to_oss_url(file_path: str):
    if file_path.startswith("http"):
        return file_path
    ext = file_path.split('.')[-1]
    object_name = f'studio-temp/Qwen2.5-Omni-Demo/{uuid.uuid4()}.{ext}'
    response = bucket.put_object_from_file(object_name, file_path)
    file_url = file_path
    if response.status == HTTPStatus.OK:
        file_url = bucket.sign_url('GET',
                                   object_name,
                                   60 * 60,
                                   slash_safe=True)
    return file_url


def format_history(history: list, system_prompt: str, oss_cache):
    messages = []
    messages.append({"role": "system", "content": system_prompt})
    for item in history:
        if isinstance(item["content"], str):
            messages.append({"role": item['role'], "content": item['content']})
        elif item["role"] == "user" and (isinstance(item["content"], list) or
                                         isinstance(item["content"], tuple)):
            file_path = item["content"][0]

            file_url = oss_cache.get(file_path,
                                     file_path_to_oss_url(file_path))
            oss_cache[file_path] = file_url

            file_url = file_url if file_url.startswith(
                "http") else encode_file_to_base64(file_path=file_path)

            mime_type = client_utils.get_mimetype(file_path)
            ext = file_path.split('.')[-1]

            if mime_type.startswith("image"):
                messages.append({
                    "role":
                    item['role'],
                    "content": [{
                        "type": "image_url",
                        "image_url": {
                            "url": file_url
                        }
                    }]
                })
            elif mime_type.startswith("video"):
                messages.append({
                    "role":
                    item['role'],
                    "content": [{
                        "type": "video_url",
                        "video_url": {
                            "url": file_url
                        }
                    }]
                })
            elif mime_type.startswith("audio"):
                messages.append({
                    "role":
                    item['role'],
                    "content": [{
                        "type": "input_audio",
                        "input_audio": {
                            "data": file_url,
                            "format": ext
                        }
                    }]
                })
    return messages


def predict(messages, voice=DEFAULT_VOICE):
    print('predict history: ', messages)
    completion = client.chat.completions.create(
        model="qwen-omni-turbo",
        messages=messages,
        modalities=["text", "audio"],
        audio={
            "voice": voice,
            "format": "wav"
        },
        stream=True,
        stream_options={"include_usage": True})

    response_text = ""
    audio_str = ""
    for chunk in completion:
        if chunk.choices:
            delta = chunk.choices[0].delta
            if hasattr(
                    delta,
                    'audio') and delta.audio and delta.audio.get("transcript"):
                response_text += delta.audio.get("transcript")
            if hasattr(delta,
                       'audio') and delta.audio and delta.audio.get("data"):
                audio_str += delta.audio.get("data")
            yield {"type": "text", "data": response_text}
    pcm_bytes = base64.b64decode(audio_str)
    audio_np = np.frombuffer(pcm_bytes, dtype=np.int16)
    wav_io = io.BytesIO()
    sf.write(wav_io, audio_np, samplerate=24000, format="WAV")
    wav_io.seek(0)
    wav_bytes = wav_io.getvalue()
    audio_path = processing_utils.save_bytes_to_cache(
        wav_bytes, "audio.wav", cache_dir=demo.GRADIO_CACHE)
    yield {"type": "audio", "data": audio_path}


def media_predict(audio, video, history, system_prompt, state_value,
                  voice_choice):
    files = [audio, video]
    for f in files:
        if f:
            history.append({"role": "user", "content": (f, )})

    formatted_history = format_history(history=history,
                                       system_prompt=system_prompt,
                                       oss_cache=state_value["oss_cache"])

    # First yield
    yield (
        None,  # microphone
        None,  # webcam
        history,  # media_chatbot
        gr.update(visible=False),  # submit_btn
        gr.update(visible=True),  # stop_btn
        state_value  # state
    )

    history.append({"role": "assistant", "content": ""})

    for chunk in predict(formatted_history, voice_choice):
        if chunk["type"] == "text":
            history[-1]["content"] = chunk["data"]
            yield (
                None,  # microphone
                None,  # webcam
                history,  # media_chatbot
                gr.update(visible=False),  # submit_btn
                gr.update(visible=True),  # stop_btn
                state_value  # state
            )
        if chunk["type"] == "audio":
            history.append({
                "role": "assistant",
                "content": gr.Audio(chunk["data"])
            })

    # Final yield
    yield (
        None,  # microphone
        None,  # webcam
        history,  # media_chatbot
        gr.update(visible=True),  # submit_btn
        gr.update(visible=False),  # stop_btn
        state_value  # state
    )


def chat_predict(text, audio, image, video, history, system_prompt,
                 state_value, voice_choice):
    # Process text input
    if text:
        history.append({"role": "user", "content": text})

    # Process audio input
    if audio:
        history.append({"role": "user", "content": (audio, )})

    # Process image input
    if image:
        history.append({"role": "user", "content": (image, )})

    # Process video input
    if video:
        history.append({"role": "user", "content": (video, )})

    formatted_history = format_history(history=history,
                                       system_prompt=system_prompt,
                                       oss_cache=state_value["oss_cache"])

    yield None, None, None, None, history, state_value

    history.append({"role": "assistant", "content": ""})
    for chunk in predict(formatted_history, voice_choice):
        if chunk["type"] == "text":
            history[-1]["content"] = chunk["data"]
            yield gr.skip(), gr.skip(), gr.skip(), gr.skip(
            ), history, state_value
        if chunk["type"] == "audio":
            history.append({
                "role": "assistant",
                "content": gr.Audio(chunk["data"])
            })
    yield gr.skip(), gr.skip(), gr.skip(), gr.skip(), history, state_value


with gr.Blocks() as demo, ms.Application(), antd.ConfigProvider():
    state = gr.State({"oss_cache": {}})

    with gr.Sidebar(open=False):
        system_prompt_textbox = gr.Textbox(label="System Prompt",
                                           value=default_system_prompt)
        voice_choice = gr.Dropdown(label="Voice Choice",
                                   choices=VOICE_LIST,
                                   value=DEFAULT_VOICE)
    with antd.Flex(gap="small", justify="center", align="center"):
        antd.Image('./logo-1.png', preview=False, width=67, height=67)
        with antd.Flex(vertical=True, gap="small", align="center"):
            antd.Typography.Title("Qwen2.5-Omni Demo",
                                  level=1,
                                  elem_style=dict(margin=0, fontSize=28))
            with antd.Flex(vertical=True, gap="small"):
                antd.Typography.Text(get_text("🎯 Instructions for use:",
                                              "🎯 使用说明:"),
                                     strong=True)
                antd.Typography.Text(
                    get_text(
                        "1️⃣ Click the Audio Record button or the Camera Record button.",
                        "1️⃣ 点击音频录制按钮,或摄像头-录制按钮"))
                antd.Typography.Text(
                    get_text("2️⃣ Input audio or video.", "2️⃣ 输入音频或者视频"))
                antd.Typography.Text(
                    get_text(
                        "3️⃣ Click the submit button and wait for the model's response.",
                        "3️⃣ 点击提交并等待模型的回答"))
        antd.Image('./logo-2.png',
                   preview=False,
                   width=80,
                   height=80,
                   elem_style=dict(marginTop=5))
    with gr.Tabs():
        with gr.Tab("Online"):
            with gr.Row():
                with gr.Column(scale=1):
                    microphone = gr.Audio(sources=['microphone'],
                                          format="wav",
                                          type="filepath")
                    webcam = gr.Video(sources=['webcam'],
                                      format="mp4",
                                      height=400,
                                      include_audio=True)
                    submit_btn = gr.Button(get_text("Submit", "提交"),
                                           variant="primary")
                    stop_btn = gr.Button(get_text("Stop", "停止"), visible=False)
                    clear_btn = gr.Button(get_text("Clear History", "清除历史"))
                with gr.Column(scale=2):
                    media_chatbot = gr.Chatbot(height=650, type="messages")

                def clear_history():
                    return [], gr.update(value=None), gr.update(value=None)

                submit_event = submit_btn.click(fn=media_predict,
                                                inputs=[
                                                    microphone, webcam,
                                                    media_chatbot,
                                                    system_prompt_textbox,
                                                    state, voice_choice
                                                ],
                                                outputs=[
                                                    microphone, webcam,
                                                    media_chatbot, submit_btn,
                                                    stop_btn, state
                                                ])
                stop_btn.click(
                    fn=lambda:
                    (gr.update(visible=True), gr.update(visible=False)),
                    inputs=None,
                    outputs=[submit_btn, stop_btn],
                    cancels=[submit_event],
                    queue=False)
                clear_btn.click(fn=clear_history,
                                inputs=None,
                                outputs=[media_chatbot, microphone, webcam])

        with gr.Tab("Offline"):
            chatbot = gr.Chatbot(type="messages", height=650)

            # Media upload section in one row
            with gr.Row(equal_height=True):
                audio_input = gr.Audio(sources=["upload"],
                                       type="filepath",
                                       label="Upload Audio",
                                       elem_classes="media-upload",
                                       scale=1)
                image_input = gr.Image(sources=["upload"],
                                       type="filepath",
                                       label="Upload Image",
                                       elem_classes="media-upload",
                                       scale=1)
                video_input = gr.Video(sources=["upload"],
                                       label="Upload Video",
                                       elem_classes="media-upload",
                                       scale=1)

            # Text input section
            text_input = gr.Textbox(show_label=False,
                                    placeholder="Enter text here...")

            # Control buttons
            with gr.Row():
                submit_btn = gr.Button(get_text("Submit", "提交"),
                                       variant="primary",
                                       size="lg")
                stop_btn = gr.Button(get_text("Stop", "停止"),
                                     visible=False,
                                     size="lg")
                clear_btn = gr.Button(get_text("Clear History", "清除历史"),
                                      size="lg")

            def clear_chat_history():
                return [], gr.update(value=None), gr.update(
                    value=None), gr.update(value=None), gr.update(value=None)

            submit_event = gr.on(
                triggers=[submit_btn.click, text_input.submit],
                fn=chat_predict,
                inputs=[
                    text_input, audio_input, image_input, video_input, chatbot,
                    system_prompt_textbox, state, voice_choice
                ],
                outputs=[
                    text_input, audio_input, image_input, video_input, chatbot,
                    state
                ])

            stop_btn.click(fn=lambda:
                           (gr.update(visible=True), gr.update(visible=False)),
                           inputs=None,
                           outputs=[submit_btn, stop_btn],
                           cancels=[submit_event],
                           queue=False)

            clear_btn.click(fn=clear_chat_history,
                            inputs=None,
                            outputs=[
                                chatbot, text_input, audio_input, image_input,
                                video_input
                            ])

            # Add some custom CSS to improve the layout
            gr.HTML("""
                <style>
                    .media-upload {
                        margin: 10px;
                        min-height: 160px;
                    }
                    .media-upload > .wrap {
                        border: 2px dashed #ccc;
                        border-radius: 8px;
                        padding: 10px;
                        height: 100%;
                    }
                    .media-upload:hover > .wrap {
                        border-color: #666;
                    }
                    /* Make upload areas equal width */
                    .media-upload {
                        flex: 1;
                        min-width: 0;
                    }
                </style>
            """)

demo.queue(default_concurrency_limit=100, max_size=100).launch(max_threads=100,
                                                               ssr_mode=False)