Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,367 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
from pathlib import Path
|
4 |
+
import time
|
5 |
+
|
6 |
+
import pandas as pd
|
7 |
+
import re
|
8 |
+
import time
|
9 |
+
import os
|
10 |
+
|
11 |
+
import whisper
|
12 |
+
from pytube import YouTube
|
13 |
+
|
14 |
+
import psutil
|
15 |
+
num_cores = psutil.cpu_count()
|
16 |
+
os.environ["OMP_NUM_THREADS"] = f"{num_cores}"
|
17 |
+
|
18 |
+
|
19 |
+
import torch
|
20 |
+
|
21 |
+
|
22 |
+
# is cuda available?
|
23 |
+
|
24 |
+
from easynmt import EasyNMT
|
25 |
+
translation_model = EasyNMT('m2m_100_418M', max_new_tokens=60)
|
26 |
+
|
27 |
+
asr_model = whisper.load_model("base")
|
28 |
+
transcribe_options = dict(beam_size=3, best_of=3, without_timestamps=False)
|
29 |
+
|
30 |
+
translation_models = {
|
31 |
+
"Afrikaans":"af",
|
32 |
+
"Amharic":"am",
|
33 |
+
"Arabic":"ar",
|
34 |
+
"Asturian ":"st",
|
35 |
+
"Azerbaijani":"az",
|
36 |
+
"Bashkir":"ba",
|
37 |
+
"Belarusian":"be",
|
38 |
+
"Bulgarian":"bg",
|
39 |
+
"Bengali":"bn",
|
40 |
+
"Breton":"br",
|
41 |
+
"Bosnian":"bs",
|
42 |
+
"Catalan; Valencian":"ca",
|
43 |
+
"Cebuano":"eb",
|
44 |
+
"Czech":"cs",
|
45 |
+
"Welsh":"cy",
|
46 |
+
"Danish":"da",
|
47 |
+
"German":"de",
|
48 |
+
"Greeek":"el",
|
49 |
+
"English":"en",
|
50 |
+
"Spanish":"es",
|
51 |
+
"Estonian":"et",
|
52 |
+
"Persian":"fa",
|
53 |
+
"Fulah":"ff",
|
54 |
+
"Finnish":"fi",
|
55 |
+
"French":"fr",
|
56 |
+
"Western Frisian":"fy",
|
57 |
+
"Irish":"ga",
|
58 |
+
"Gaelic; Scottish Gaelic":"gd",
|
59 |
+
"Galician":"gl",
|
60 |
+
"Gujarati":"gu",
|
61 |
+
"Hausa":"ha",
|
62 |
+
"Hebrew":"he",
|
63 |
+
"Hindi":"hi",
|
64 |
+
"Croatian":"hr",
|
65 |
+
"Haitian; Haitian Creole":"ht",
|
66 |
+
"Hungarian":"hu",
|
67 |
+
"Armenian":"hy",
|
68 |
+
"Indonesian":"id",
|
69 |
+
"Igbo":"ig",
|
70 |
+
"Iloko":"lo",
|
71 |
+
"Icelandic":"is",
|
72 |
+
"Italian":"it",
|
73 |
+
"Japanese":"ja",
|
74 |
+
"Javanese":"jv",
|
75 |
+
"Georgian":"ka",
|
76 |
+
"Kazakh":"kk",
|
77 |
+
"Central Khmer":"km",
|
78 |
+
"Kannada":"kn",
|
79 |
+
"Korean":"ko",
|
80 |
+
"Luxembourgish; Letzeburgesch":"lb",
|
81 |
+
"Ganda":"lg",
|
82 |
+
"Lingala":"ln",
|
83 |
+
"Lao":"lo",
|
84 |
+
"Lithuanian":"lt",
|
85 |
+
"Latvian":"lv",
|
86 |
+
"Malagasy":"mg",
|
87 |
+
"Macedonian":"mk",
|
88 |
+
"Malayalam":"ml",
|
89 |
+
"Mongolian":"mn",
|
90 |
+
"Marathi":"mr",
|
91 |
+
"Malay":"ms",
|
92 |
+
"Burmese":"my",
|
93 |
+
"Nepali":"ne",
|
94 |
+
"Dutch; Flemish":"nl",
|
95 |
+
"Norwegian":"no",
|
96 |
+
"Northern Sotho":"ns",
|
97 |
+
"Occitan (post 1500)":"oc",
|
98 |
+
"Oriya":"or",
|
99 |
+
"Panjabi; Punjabi":"pa",
|
100 |
+
"Polish":"pl",
|
101 |
+
"Pushto; Pashto":"ps",
|
102 |
+
"Portuguese":"pt",
|
103 |
+
"Romanian; Moldavian; Moldovan":"ro",
|
104 |
+
"Russian":"ru",
|
105 |
+
"Sindhi":"sd",
|
106 |
+
"Sinhala; Sinhalese":"si",
|
107 |
+
"Slovak":"sk",
|
108 |
+
"Slovenian":"sl",
|
109 |
+
"Somali":"so",
|
110 |
+
"Albanian":"sq",
|
111 |
+
"Serbian":"sr",
|
112 |
+
"Swati":"ss",
|
113 |
+
"Sundanese":"su",
|
114 |
+
"Swedish":"sv",
|
115 |
+
"Swahili":"sw",
|
116 |
+
"Tamil":"ta",
|
117 |
+
"Thai":"th",
|
118 |
+
"Tagalog":"tl",
|
119 |
+
"Tswana":"tn",
|
120 |
+
"Turkish":"tr",
|
121 |
+
"Ukrainian":"uk",
|
122 |
+
"Urdu":"ur",
|
123 |
+
"Uzbek":"uz",
|
124 |
+
"Vietnamese":"vi",
|
125 |
+
"Wolof":"wo",
|
126 |
+
"Xhosa":"xh",
|
127 |
+
"Yiddish":"yi",
|
128 |
+
"Yoruba":"yo",
|
129 |
+
"Chinese":"zh",
|
130 |
+
"Zulu":"zu"
|
131 |
+
}
|
132 |
+
|
133 |
+
translation_models_list = [key[0] for key in translation_models.items()]
|
134 |
+
|
135 |
+
|
136 |
+
device = "cpu"#torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
137 |
+
print("DEVICE IS: ")
|
138 |
+
print(device)
|
139 |
+
|
140 |
+
videos_out_path = Path("./videos_out")
|
141 |
+
videos_out_path.mkdir(parents=True, exist_ok=True)
|
142 |
+
|
143 |
+
def get_youtube(video_url):
|
144 |
+
yt = YouTube(video_url)
|
145 |
+
abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download()
|
146 |
+
print("LADATATTU POLKUUN")
|
147 |
+
print(abs_video_path)
|
148 |
+
|
149 |
+
return abs_video_path
|
150 |
+
|
151 |
+
async def speech_to_text(video_file_path, selected_translation_lang):
|
152 |
+
"""
|
153 |
+
# Youtube with translated subtitles using OpenAI Whisper and Opus-MT models.
|
154 |
+
# Currently supports only English audio
|
155 |
+
This space allows you to:
|
156 |
+
1. Download youtube video with a given url
|
157 |
+
2. Watch it in the first video component
|
158 |
+
3. Run automatic speech recognition on the video using Whisper
|
159 |
+
4. Translate the recognized transcriptions to Finnish, Swedish, Danish
|
160 |
+
5. Burn the translations to the original video and watch the video in the 2nd video component
|
161 |
+
|
162 |
+
Speech Recognition is based on OpenAI Whisper https://github.com/openai/whisper
|
163 |
+
"""
|
164 |
+
|
165 |
+
if(video_file_path == None):
|
166 |
+
raise ValueError("Error no video input")
|
167 |
+
print(video_file_path)
|
168 |
+
try:
|
169 |
+
audio = whisper.load_audio(video_file_path)
|
170 |
+
except Exception as e:
|
171 |
+
raise RuntimeError("Error converting video to audio")
|
172 |
+
|
173 |
+
last_time = time.time()
|
174 |
+
|
175 |
+
try:
|
176 |
+
print(f'Transcribing via local model')
|
177 |
+
transcribe_options = dict(beam_size=5, best_of=5, without_timestamps=False)
|
178 |
+
|
179 |
+
transcription = asr_model.transcribe(audio, **transcribe_options)
|
180 |
+
|
181 |
+
|
182 |
+
#translation_options = dict(language=selected_translation_lang, beam_size=5, best_of=5, without_timestamps=False)
|
183 |
+
#translations = asr_model.transcribe(audio, **translation_options)
|
184 |
+
|
185 |
+
df = pd.DataFrame(columns=['start','end','text'])
|
186 |
+
|
187 |
+
|
188 |
+
|
189 |
+
for i,segment in enumerate(transcription['segments']):
|
190 |
+
new_row = {'start': segment['start'],
|
191 |
+
'end': segment['end'],
|
192 |
+
'text': segment['text']
|
193 |
+
}
|
194 |
+
df = df.append(new_row, ignore_index=True)
|
195 |
+
|
196 |
+
if selected_translation_lang is None:
|
197 |
+
selected_translation_lang = 'Finnish'
|
198 |
+
|
199 |
+
sentences = df['text']
|
200 |
+
df['translation'] = translation_model.translate(sentences, target_lang=translation_models.get(selected_translation_lang), max_new_tokens = 50)
|
201 |
+
|
202 |
+
|
203 |
+
print('After translation to target language \n')
|
204 |
+
|
205 |
+
return (df)
|
206 |
+
except Exception as e:
|
207 |
+
raise RuntimeError("Error Running inference with local model", e)
|
208 |
+
|
209 |
+
|
210 |
+
def create_srt_and_burn(df, video_in):
|
211 |
+
|
212 |
+
print("Starting creation of video wit srt")
|
213 |
+
|
214 |
+
|
215 |
+
with open('testi.srt','w', encoding="utf-8") as file:
|
216 |
+
for i in range(len(df)):
|
217 |
+
file.write(str(i+1))
|
218 |
+
file.write('\n')
|
219 |
+
start = df.iloc[i]['start']
|
220 |
+
|
221 |
+
|
222 |
+
milliseconds = round(start * 1000.0)
|
223 |
+
|
224 |
+
hours = milliseconds // 3_600_000
|
225 |
+
milliseconds -= hours * 3_600_000
|
226 |
+
|
227 |
+
minutes = milliseconds // 60_000
|
228 |
+
milliseconds -= minutes * 60_000
|
229 |
+
|
230 |
+
seconds = milliseconds // 1_000
|
231 |
+
milliseconds -= seconds * 1_000
|
232 |
+
|
233 |
+
file.write(f"{hours}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}")
|
234 |
+
|
235 |
+
stop = df.iloc[i]['end']
|
236 |
+
|
237 |
+
|
238 |
+
milliseconds = round(stop * 1000.0)
|
239 |
+
|
240 |
+
hours = milliseconds // 3_600_000
|
241 |
+
milliseconds -= hours * 3_600_000
|
242 |
+
|
243 |
+
minutes = milliseconds // 60_000
|
244 |
+
milliseconds -= minutes * 60_000
|
245 |
+
|
246 |
+
seconds = milliseconds // 1_000
|
247 |
+
milliseconds -= seconds * 1_000
|
248 |
+
|
249 |
+
|
250 |
+
file.write(' --> ')
|
251 |
+
file.write(f"{hours}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}")
|
252 |
+
file.write('\n')
|
253 |
+
file.writelines(df.iloc[i]['translation'])
|
254 |
+
if int(i) != len(df)-1:
|
255 |
+
file.write('\n\n')
|
256 |
+
|
257 |
+
print("SRT DONE")
|
258 |
+
try:
|
259 |
+
file1 = open('./testi.srt', 'r', encoding="utf-8")
|
260 |
+
Lines = file1.readlines()
|
261 |
+
|
262 |
+
count = 0
|
263 |
+
# Strips the newline character
|
264 |
+
for line in Lines:
|
265 |
+
count += 1
|
266 |
+
print("{}".format(line))
|
267 |
+
|
268 |
+
print(type(video_in))
|
269 |
+
print(video_in)
|
270 |
+
|
271 |
+
video_out = video_in.replace('.mp4', '_out.mp4')
|
272 |
+
print(video_out)
|
273 |
+
command = 'ffmpeg -i "{}" -y -vf subtitles=./testi.srt "{}"'.format(video_in, video_out)
|
274 |
+
print(command)
|
275 |
+
os.system(command)
|
276 |
+
return video_out
|
277 |
+
except Exception as e:
|
278 |
+
print(e)
|
279 |
+
return video_out
|
280 |
+
|
281 |
+
|
282 |
+
# ---- Gradio Layout -----
|
283 |
+
video_in = gr.Video(label="Video file", mirror_webcam=False)
|
284 |
+
youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True)
|
285 |
+
video_out = gr.Video(label="Video Out", mirror_webcam=False)
|
286 |
+
|
287 |
+
|
288 |
+
df_init = pd.DataFrame(columns=['start','end','text','translation'])
|
289 |
+
selected_translation_lang = gr.Dropdown(choices=translation_models_list, type="value", value="English", label="Language to translate transcriptions to", interactive=True)
|
290 |
+
|
291 |
+
transcription_df = gr.DataFrame(value=df_init,label="Transcription dataframe", row_count=(0, "dynamic"), max_rows = 10)
|
292 |
+
|
293 |
+
|
294 |
+
demo = gr.Blocks(css='''
|
295 |
+
#cut_btn, #reset_btn { align-self:stretch; }
|
296 |
+
#\\31 3 { max-width: 540px; }
|
297 |
+
.output-markdown {max-width: 65ch !important;}
|
298 |
+
''')
|
299 |
+
demo.encrypt = False
|
300 |
+
with demo:
|
301 |
+
transcription_var = gr.Variable()
|
302 |
+
|
303 |
+
with gr.Row():
|
304 |
+
with gr.Column():
|
305 |
+
gr.Markdown('''
|
306 |
+
### This space allows you to:
|
307 |
+
##### 1. Download youtube video with a given URL
|
308 |
+
##### 2. Watch it in the first video component
|
309 |
+
##### 3. Run automatic speech recognition on the video using Whisper (Please remember to select translation language)
|
310 |
+
##### 4. Translate the recognized transcriptions to Finnish, Swedish, Danish
|
311 |
+
##### 5. Burn the translations to the original video and watch the video in the 2nd video component
|
312 |
+
''')
|
313 |
+
|
314 |
+
with gr.Column():
|
315 |
+
gr.Markdown('''
|
316 |
+
### 1. Insert Youtube URL below (Some examples below which I suggest to use for first tests)
|
317 |
+
##### 1. https://www.youtube.com/watch?v=nlMuHtV82q8&ab_channel=NothingforSale24
|
318 |
+
##### 2. https://www.youtube.com/watch?v=JzPfMbG1vrE&ab_channel=ExplainerVideosByLauren
|
319 |
+
##### 3. https://www.youtube.com/watch?v=S68vvV0kod8&ab_channel=Pearl-CohnTelevision
|
320 |
+
''')
|
321 |
+
|
322 |
+
with gr.Row():
|
323 |
+
with gr.Column():
|
324 |
+
youtube_url_in.render()
|
325 |
+
download_youtube_btn = gr.Button("Step 1. Download Youtube video")
|
326 |
+
download_youtube_btn.click(get_youtube, [youtube_url_in], [
|
327 |
+
video_in])
|
328 |
+
print(video_in)
|
329 |
+
|
330 |
+
|
331 |
+
with gr.Row():
|
332 |
+
with gr.Column():
|
333 |
+
video_in.render()
|
334 |
+
with gr.Column():
|
335 |
+
gr.Markdown('''
|
336 |
+
##### Here you can start the transcription and translation process.
|
337 |
+
##### Be aware that processing will last for a while (35 second video took around 20 seconds in my testing)
|
338 |
+
''')
|
339 |
+
transcribe_btn = gr.Button("Step 2. Transcribe and translate audio")
|
340 |
+
|
341 |
+
transcribe_btn.click(speech_to_text, [video_in, selected_translation_lang], transcription_df)
|
342 |
+
|
343 |
+
with gr.Row():
|
344 |
+
with gr.Column():
|
345 |
+
selected_translation_lang.render()
|
346 |
+
|
347 |
+
with gr.Row():
|
348 |
+
gr.Markdown('''
|
349 |
+
##### Here you will get transcription and translation output
|
350 |
+
##### If you see error please remember to select translation language
|
351 |
+
##### ''')
|
352 |
+
|
353 |
+
with gr.Row():
|
354 |
+
with gr.Column():
|
355 |
+
transcription_df.render()
|
356 |
+
|
357 |
+
with gr.Row():
|
358 |
+
with gr.Column():
|
359 |
+
translate_and_make_srt_btn = gr.Button("Step 3. Create and burn srt to video")
|
360 |
+
print(video_in)
|
361 |
+
translate_and_make_srt_btn.click(create_srt_and_burn, [transcription_df,video_in], [
|
362 |
+
video_out])
|
363 |
+
video_out.render()
|
364 |
+
|
365 |
+
|
366 |
+
if __name__ == "__main__":
|
367 |
+
demo.queue().launch(debug=True, share=False, enable_queue=True)
|