import gradio as gr import os from pathlib import Path import time import pandas as pd import re import time import os import whisper from pytube import YouTube import psutil num_cores = psutil.cpu_count() os.environ["OMP_NUM_THREADS"] = f"{num_cores}" import torch # is cuda available? num_cores = psutil.cpu_count() os.environ["OMP_NUM_THREADS"] = f"{num_cores}" headers = {'Authorization': os.environ['DeepL_API_KEY']} device = "cpu"#torch.device("cuda" if torch.cuda.is_available() else "cpu") print("DEVICE IS: ") print(device) asr_model_base = whisper.load_model("base", device=device) asr_model_small = whisper.load_model("small", device=device) whisper_models_dict = { 'base': asr_model_base, 'small': asr_model_small } whisper_models = ["base", "small"] transcribe_options = dict(beam_size=3, best_of=3, without_timestamps=False) source_languages = { "Afrikaans":"af", "Amharic":"am", "Arabic":"ar", "Asturian ":"st", "Azerbaijani":"az", "Bashkir":"ba", "Belarusian":"be", "Bulgarian":"bg", "Bengali":"bn", "Breton":"br", "Bosnian":"bs", "Catalan; Valencian":"ca", "Cebuano":"eb", "Czech":"cs", "Welsh":"cy", "Danish":"da", "German":"de", "Greeek":"el", "English":"en", "Spanish":"es", "Estonian":"et", "Persian":"fa", "Fulah":"ff", "Finnish":"fi", "French":"fr", "Western Frisian":"fy", "Irish":"ga", "Gaelic; Scottish Gaelic":"gd", "Galician":"gl", "Gujarati":"gu", "Hausa":"ha", "Hebrew":"he", "Hindi":"hi", "Croatian":"hr", "Haitian; Haitian Creole":"ht", "Hungarian":"hu", "Armenian":"hy", "Indonesian":"id", "Igbo":"ig", "Iloko":"lo", "Icelandic":"is", "Italian":"it", "Japanese":"ja", "Javanese":"jv", "Georgian":"ka", "Kazakh":"kk", "Central Khmer":"km", "Kannada":"kn", "Korean":"ko", "Luxembourgish; Letzeburgesch":"lb", "Ganda":"lg", "Lingala":"ln", "Lao":"lo", "Lithuanian":"lt", "Latvian":"lv", "Malagasy":"mg", "Macedonian":"mk", "Malayalam":"ml", "Mongolian":"mn", "Marathi":"mr", "Malay":"ms", "Burmese":"my", "Nepali":"ne", "Dutch; Flemish":"nl", "Norwegian":"no", "Northern Sotho":"ns", "Occitan (post 1500)":"oc", "Oriya":"or", "Panjabi; Punjabi":"pa", "Polish":"pl", "Pushto; Pashto":"ps", "Portuguese":"pt", "Romanian; Moldavian; Moldovan":"ro", "Russian":"ru", "Sindhi":"sd", "Sinhala; Sinhalese":"si", "Slovak":"sk", "Slovenian":"sl", "Somali":"so", "Albanian":"sq", "Serbian":"sr", "Swati":"ss", "Sundanese":"su", "Swedish":"sv", "Swahili":"sw", "Tamil":"ta", "Thai":"th", "Tagalog":"tl", "Tswana":"tn", "Turkish":"tr", "Ukrainian":"uk", "Urdu":"ur", "Uzbek":"uz", "Vietnamese":"vi", "Wolof":"wo", "Xhosa":"xh", "Yiddish":"yi", "Yoruba":"yo", "Chinese":"zh", "Zulu":"zu", "Let the model analyze": "Let the model analyze" } DeepL_language_codes_for_translation = { "Bulgarian": "BG", "Czech": "CS", "Danish": "DA", "German": "DE", "Greek": "EL", "English": "EN", "Spanish": "ES", "Estonian": "ET", "Finnish": "FI", "French": "FR", "Hungarian": "HU", "Indonesian": "ID", "Italian": "IT", "Japanese": "JA", "Lithuanian": "LT", "Latvian": "LV", "Dutch": "NL", "Polish": "PL", "Portuguese": "PT", "Romanian": "RO", "Russian": "RU", "Slovak": "SK", "Slovenian": "SL", "Swedish": "SV", "Turkish": "TR", "Ukrainian": "UK", "Chinese": "ZH" } source_language_list = [key[0] for key in source_languages.items()] translation_models_list = [key[0] for key in DeepL_language_codes_for_translation.items()] videos_out_path = Path("./videos_out") videos_out_path.mkdir(parents=True, exist_ok=True) def get_youtube(video_url): yt = YouTube(video_url) abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download() print("LADATATTU POLKUUN") print(abs_video_path) return abs_video_path def speech_to_text(video_file_path, selected_translation_lang, whisper_model): """ # Youtube with translated subtitles using OpenAI Whisper and Opus-MT models. # Currently supports only English audio This space allows you to: 1. Download youtube video with a given url 2. Watch it in the first video component 3. Run automatic speech recognition on the video using fast Whisper models 4. Translate the recognized transcriptions to 26 languages supported by deepL (If source language not supported this will return original transciption) 5. Burn the translations to the original video and watch the video in the 2nd video component Speech Recognition is based on models from OpenAI Whisper https://github.com/openai/whisper This space is using c++ implementation by https://github.com/ggerganov/whisper.cpp """ if(video_file_path == None): raise ValueError("Error no video input") print(video_file_path) try: audio = whisper.load_audio(video_file_path) except Exception as e: raise RuntimeError("Error converting video to audio") last_time = time.time() try: print(f'Transcribing via local model') transcribe_options = dict(beam_size=5, best_of=5, without_timestamps=False) transcription = whisper_models_dict.get(whisper_model).transcribe(audio, **transcribe_options) df = pd.DataFrame(columns=['start','end','text']) for i,segment in enumerate(transcription['segments']): new_row = {'start': segment['start'], 'end': segment['end'], 'text': segment['text'] } df = df.append(new_row, ignore_index=True) return (df) except Exception as e: raise RuntimeError("Error Running inference with local model", e) def translate_transcriptions(df, selected_translation_lang_2): if selected_translation_lang_2 is None: selected_translation_lang_2 = 'English' df.reset_index(inplace=True) print("start_translation") translations = [] text_combined = "" for i, sentence in enumerate(df['text']): if i == 0: text_combined = sentence else: text_combined = text_combined + '\n' + sentence data = {'text': text_combined, 'tag_spitting': 'xml', 'target_lang': DeepL_language_codes_for_translation.get(selected_translation_lang_2) } try: response = requests.post('https://api-free.deepl.com/v2/translate', headers=headers, data=data) # Print the response from the server translated_sentences = json.loads(response.text) translated_sentences = translated_sentences['translations'][0]['text'].split('\n') df['translation'] = translated_sentences except Exception as e: print(e) df['translation'] = df['text'] print("translations done") return df def create_srt_and_burn(df, video_in): print("Starting creation of video wit srt") with open('testi.srt','w', encoding="utf-8") as file: for i in range(len(df)): file.write(str(i+1)) file.write('\n') start = df.iloc[i]['start'] milliseconds = round(start * 1000.0) hours = milliseconds // 3_600_000 milliseconds -= hours * 3_600_000 minutes = milliseconds // 60_000 milliseconds -= minutes * 60_000 seconds = milliseconds // 1_000 milliseconds -= seconds * 1_000 file.write(f"{hours}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}") stop = df.iloc[i]['end'] milliseconds = round(stop * 1000.0) hours = milliseconds // 3_600_000 milliseconds -= hours * 3_600_000 minutes = milliseconds // 60_000 milliseconds -= minutes * 60_000 seconds = milliseconds // 1_000 milliseconds -= seconds * 1_000 file.write(' --> ') file.write(f"{hours}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}") file.write('\n') file.writelines(df.iloc[i]['translation']) if int(i) != len(df)-1: file.write('\n\n') print("SRT DONE") try: file1 = open('./testi.srt', 'r', encoding="utf-8") Lines = file1.readlines() count = 0 # Strips the newline character for line in Lines: count += 1 print("{}".format(line)) print(type(video_in)) print(video_in) video_out = video_in.replace('.mp4', '_out.mp4') print(video_out) command = 'ffmpeg -i "{}" -y -vf subtitles=./testi.srt "{}"'.format(video_in, video_out) print(command) os.system(command) return video_out except Exception as e: print(e) return video_out # ---- Gradio Layout ----- video_in = gr.Video(label="Video file", mirror_webcam=False) youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True) video_out = gr.Video(label="Video Out", mirror_webcam=False) df_init = pd.DataFrame(columns=['start','end','text','translation']) selected_source_lang = gr.Dropdown(choices=source_language_list, type="value", value="Let the model analyze", label="Spoken language in video", interactive=True) selected_translation_lang_2 = gr.Dropdown(choices=translation_models_list, type="value", value="English", label="In which language you want the transcriptions?", interactive=True) selected_whisper_model = gr.Dropdown(choices=whisper_models, type="value", value="base", label="Selected Whisper model", interactive=True) transcription_df = gr.DataFrame(value=df_init,label="Transcription dataframe", row_count=(0, "dynamic"), max_rows = 10, wrap=True, overflow_row_behaviour='paginate') transcription_and_translation_df = gr.DataFrame(value=df_init,label="Transcription and translation dataframe", max_rows = 10, wrap=True, overflow_row_behaviour='paginate') demo = gr.Blocks(css=''' #cut_btn, #reset_btn { align-self:stretch; } #\\31 3 { max-width: 540px; } .output-markdown {max-width: 65ch !important;} ''') demo.encrypt = False with demo: transcription_var = gr.Variable() with gr.Row(): with gr.Column(): gr.Markdown(''' ### This space allows you to: ##### 1. Download youtube video with a given URL ##### 2. Watch it in the first video component ##### 3. Run automatic speech recognition on the video using Whisper ##### 4. Translate the recognized transcriptions to 26 languages supported by deepL ##### 5. Burn the translations to the original video and watch the video in the 2nd video component ''') with gr.Column(): gr.Markdown(''' ### 1. Insert Youtube URL below. Some test videos below: ##### 1. https://www.youtube.com/watch?v=nlMuHtV82q8&ab_channel=NothingforSale24 ##### 2. https://www.youtube.com/watch?v=JzPfMbG1vrE&ab_channel=ExplainerVideosByLauren ##### 3. https://www.youtube.com/watch?v=S68vvV0kod8&ab_channel=Pearl-CohnTelevision ''') with gr.Row(): with gr.Column(): youtube_url_in.render() download_youtube_btn = gr.Button("Step 1. Download Youtube video") download_youtube_btn.click(get_youtube, [youtube_url_in], [ video_in]) print(video_in) with gr.Row(): with gr.Column(): video_in.render() with gr.Column(): gr.Markdown(''' ##### Here you can start the transcription and translation process. ##### Be aware that processing will last some time. With base model it is around 3x speed ''') selected_source_lang.render() selected_whisper_model.render() transcribe_btn = gr.Button("Step 2. Transcribe audio") transcribe_btn.click(speech_to_text, [video_in, selected_source_lang, selected_whisper_model], transcription_df) with gr.Row(): gr.Markdown(''' ##### Here you will get transcription output ##### ''') with gr.Row(): with gr.Column(): transcription_df.render() with gr.Row(): with gr.Column(): gr.Markdown(''' ##### Here you will get translated transcriptions. ##### Please remember to select target language ##### ''') selected_translation_lang_2.render() translate_transcriptions_button = gr.Button("Step 3. Translate transcription") translate_transcriptions_button.click(translate_transcriptions, [transcription_df, selected_translation_lang_2], transcription_and_translation_df) transcription_and_translation_df.render() with gr.Row(): with gr.Column(): gr.Markdown(''' ##### Now press the Step 4. Button to create output video with translated transcriptions ##### ''') translate_and_make_srt_btn = gr.Button("Step 4. Create and burn srt to video") print(video_in) translate_and_make_srt_btn.click(create_srt_and_burn, [transcription_and_translation_df,video_in], [ video_out]) video_out.render() demo.launch()