RKP64 commited on
Commit
d4403b8
1 Parent(s): 49c95da

Upload advisor.py

Browse files
Files changed (1) hide show
  1. advisor.py +83 -0
advisor.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os, config, requests
2
+ import gradio as gr
3
+ import pandas as pd
4
+ import numpy as np
5
+ from openai.embeddings_utils import get_embedding, cosine_similarity
6
+ import openai
7
+ openai.api_key = config.OPENAI_API_KEY
8
+
9
+ messages = [{"role": "system", "content": 'You are a telecom advisor. Respond to all input in 50 words in dictionary format .'}]
10
+
11
+ # prepare Q&A embeddings dataframe
12
+ question_df = pd.read_csv('data/questions_with_embeddings.csv')
13
+ question_df['embedding'] = question_df['embedding'].apply(eval).apply(np.array)
14
+
15
+ def transcribe(audio):
16
+ global messages, question_df
17
+
18
+ # API now requires an extension so we will rename the file
19
+ audio_filename_with_extension = audio + '.wav'
20
+ os.rename(audio, audio_filename_with_extension)
21
+
22
+ audio_file = open(audio_filename_with_extension, "rb")
23
+ transcript = openai.Audio.transcribe("whisper-1", audio_file)
24
+
25
+ question_vector = get_embedding(transcript['text'], engine='text-embedding-ada-002')
26
+
27
+ question_df["similarities"] = question_df['embedding'].apply(lambda x: cosine_similarity(x, question_vector))
28
+ question_df = question_df.sort_values("similarities", ascending=False)
29
+
30
+ best_answer = question_df.iloc[0]['answer']
31
+
32
+ user_text = f"Using the following text, answer the question '{transcript['text']}'. {config.ADVISOR_CUSTOM_PROMPT}: {best_answer}"
33
+ messages.append({"role": "user", "content": user_text})
34
+
35
+ response = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=messages)
36
+
37
+ system_message = response["choices"][0]["message"]
38
+ print(system_message)
39
+ messages.append(system_message)
40
+
41
+ # text to speech request with eleven labs
42
+ url = f"https://api.elevenlabs.io/v1/text-to-speech/{config.ADVISOR_VOICE_ID}/stream"
43
+ data = {
44
+ "text": system_message["content"].replace('"', ''),
45
+ "voice_settings": {
46
+ "stability": 0.1,
47
+ "similarity_boost": 0.8
48
+ }
49
+ }
50
+
51
+ r = requests.post(url, headers={'xi-api-key': config.ELEVEN_LABS_API_KEY}, json=data)
52
+
53
+ output_filename = "reply.mp3"
54
+ with open(output_filename, "wb") as output:
55
+ output.write(r.content)
56
+
57
+ chat_transcript = ""
58
+ for message in messages:
59
+ if message['role'] != 'system':
60
+ chat_transcript += message['role'] + ": " + message['content'] + "\n\n"
61
+
62
+ # return chat_transcript
63
+ return chat_transcript, output_filename
64
+
65
+
66
+ # set a custom theme
67
+ theme = gr.themes.Default().set(
68
+ body_background_fill="#000000",
69
+ )
70
+
71
+ with gr.Blocks(theme=theme) as ui:
72
+ # advisor image input and microphone input
73
+ advisor = gr.Image(value=config.ADVISOR_IMAGE).style(width=config.ADVISOR_IMAGE_WIDTH, height=config.ADVISOR_IMAGE_HEIGHT)
74
+ audio_input = gr.Audio(source="microphone", type="filepath")
75
+
76
+ # text transcript output and audio
77
+ text_output = gr.Textbox(label="Conversation Transcript")
78
+ audio_output = gr.Audio()
79
+
80
+ btn = gr.Button("Run")
81
+ btn.click(fn=transcribe, inputs=audio_input, outputs=[text_output, audio_output])
82
+
83
+ ui.launch(debug=True, share=True)