File size: 15,365 Bytes
b152010 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
from whisperx.alignment import (
DEFAULT_ALIGN_MODELS_TORCH as DAMT,
DEFAULT_ALIGN_MODELS_HF as DAMHF,
)
from whisperx.utils import TO_LANGUAGE_CODE
import whisperx
import torch
import gc
import os
import soundfile as sf
from IPython.utils import capture # noqa
from .language_configuration import EXTRA_ALIGN, INVERTED_LANGUAGES
from .logging_setup import logger
from .postprocessor import sanitize_file_name
from .utils import remove_directory_contents, run_command
# ZERO GPU CONFIG
import spaces
import copy
import random
import time
def random_sleep():
if os.environ.get("ZERO_GPU") == "TRUE":
print("Random sleep")
sleep_time = round(random.uniform(7.2, 9.9), 1)
time.sleep(sleep_time)
@spaces.GPU(duration=120)
def load_and_transcribe_audio(asr_model, audio, compute_type, language, asr_options, batch_size, segment_duration_limit):
# Load model
model = whisperx.load_model(
asr_model,
os.environ.get("SONITR_DEVICE") if os.environ.get("ZERO_GPU") != "TRUE" else "cuda",
compute_type=compute_type,
language=language,
asr_options=asr_options,
)
# Transcribe audio
result = model.transcribe(
audio,
batch_size=batch_size,
chunk_size=segment_duration_limit,
print_progress=True,
)
del model
gc.collect()
torch.cuda.empty_cache() # noqa
return result
def load_align_and_align_segments(result, audio, DAMHF):
# Load alignment model
model_a, metadata = whisperx.load_align_model(
language_code=result["language"],
device=os.environ.get("SONITR_DEVICE") if os.environ.get("ZERO_GPU") != "TRUE" else "cuda",
model_name=None
if result["language"] in DAMHF.keys()
else EXTRA_ALIGN[result["language"]],
)
# Align segments
alignment_result = whisperx.align(
result["segments"],
model_a,
metadata,
audio,
os.environ.get("SONITR_DEVICE") if os.environ.get("ZERO_GPU") != "TRUE" else "cuda",
return_char_alignments=True,
print_progress=False,
)
# Clean up
del model_a
gc.collect()
torch.cuda.empty_cache() # noqa
return alignment_result
@spaces.GPU(duration=120)
def diarize_audio(diarize_model, audio_wav, min_speakers, max_speakers):
if os.environ.get("ZERO_GPU") == "TRUE":
diarize_model.model.to(torch.device("cuda"))
diarize_segments = diarize_model(
audio_wav,
min_speakers=min_speakers,
max_speakers=max_speakers
)
return diarize_segments
# ZERO GPU CONFIG
ASR_MODEL_OPTIONS = [
"tiny",
"base",
"small",
"medium",
"large",
"large-v1",
"large-v2",
"large-v3",
"distil-large-v2",
"Systran/faster-distil-whisper-large-v3",
"tiny.en",
"base.en",
"small.en",
"medium.en",
"distil-small.en",
"distil-medium.en",
"OpenAI_API_Whisper",
]
COMPUTE_TYPE_GPU = [
"default",
"auto",
"int8",
"int8_float32",
"int8_float16",
"int8_bfloat16",
"float16",
"bfloat16",
"float32"
]
COMPUTE_TYPE_CPU = [
"default",
"auto",
"int8",
"int8_float32",
"int16",
"float32",
]
WHISPER_MODELS_PATH = './WHISPER_MODELS'
def openai_api_whisper(
input_audio_file,
source_lang=None,
chunk_duration=1800
):
info = sf.info(input_audio_file)
duration = info.duration
output_directory = "./whisper_api_audio_parts"
os.makedirs(output_directory, exist_ok=True)
remove_directory_contents(output_directory)
if duration > chunk_duration:
# Split the audio file into smaller chunks with 30-minute duration
cm = f'ffmpeg -i "{input_audio_file}" -f segment -segment_time {chunk_duration} -c:a libvorbis "{output_directory}/output%03d.ogg"'
run_command(cm)
# Get list of generated chunk files
chunk_files = sorted(
[f"{output_directory}/{f}" for f in os.listdir(output_directory) if f.endswith('.ogg')]
)
else:
one_file = f"{output_directory}/output000.ogg"
cm = f'ffmpeg -i "{input_audio_file}" -c:a libvorbis {one_file}'
run_command(cm)
chunk_files = [one_file]
# Transcript
segments = []
language = source_lang if source_lang else None
for i, chunk in enumerate(chunk_files):
from openai import OpenAI
client = OpenAI()
audio_file = open(chunk, "rb")
transcription = client.audio.transcriptions.create(
model="whisper-1",
file=audio_file,
language=language,
response_format="verbose_json",
timestamp_granularities=["segment"],
)
try:
transcript_dict = transcription.model_dump()
except: # noqa
transcript_dict = transcription.to_dict()
if language is None:
logger.info(f'Language detected: {transcript_dict["language"]}')
language = TO_LANGUAGE_CODE[transcript_dict["language"]]
chunk_time = chunk_duration * (i)
for seg in transcript_dict["segments"]:
if "start" in seg.keys():
segments.append(
{
"text": seg["text"],
"start": seg["start"] + chunk_time,
"end": seg["end"] + chunk_time,
}
)
audio = whisperx.load_audio(input_audio_file)
result = {"segments": segments, "language": language}
return audio, result
def find_whisper_models():
path = WHISPER_MODELS_PATH
folders = []
if os.path.exists(path):
for folder in os.listdir(path):
folder_path = os.path.join(path, folder)
if (
os.path.isdir(folder_path)
and 'model.bin' in os.listdir(folder_path)
):
folders.append(folder)
return folders
def transcribe_speech(
audio_wav,
asr_model,
compute_type,
batch_size,
SOURCE_LANGUAGE,
literalize_numbers=True,
segment_duration_limit=15,
):
"""
Transcribe speech using a whisper model.
Parameters:
- audio_wav (str): Path to the audio file in WAV format.
- asr_model (str): The whisper model to be loaded.
- compute_type (str): Type of compute to be used (e.g., 'int8', 'float16').
- batch_size (int): Batch size for transcription.
- SOURCE_LANGUAGE (str): Source language for transcription.
Returns:
- Tuple containing:
- audio: Loaded audio file.
- result: Transcription result as a dictionary.
"""
if asr_model == "OpenAI_API_Whisper":
if literalize_numbers:
logger.info(
"OpenAI's API Whisper does not support "
"the literalization of numbers."
)
return openai_api_whisper(audio_wav, SOURCE_LANGUAGE)
# https://github.com/openai/whisper/discussions/277
prompt = "ไปฅไธๆฏๆฎ้่ฏ็ๅฅๅญใ" if SOURCE_LANGUAGE == "zh" else None
SOURCE_LANGUAGE = (
SOURCE_LANGUAGE if SOURCE_LANGUAGE != "zh-TW" else "zh"
)
asr_options = {
"initial_prompt": prompt,
"suppress_numerals": literalize_numbers
}
if asr_model not in ASR_MODEL_OPTIONS:
base_dir = WHISPER_MODELS_PATH
if not os.path.exists(base_dir):
os.makedirs(base_dir)
model_dir = os.path.join(base_dir, sanitize_file_name(asr_model))
if not os.path.exists(model_dir):
from ctranslate2.converters import TransformersConverter
quantization = "float32"
# Download new model
try:
converter = TransformersConverter(
asr_model,
low_cpu_mem_usage=True,
copy_files=[
"tokenizer_config.json", "preprocessor_config.json"
]
)
converter.convert(
model_dir,
quantization=quantization,
force=False
)
except Exception as error:
if "File tokenizer_config.json does not exist" in str(error):
converter._copy_files = [
"tokenizer.json", "preprocessor_config.json"
]
converter.convert(
model_dir,
quantization=quantization,
force=True
)
else:
raise error
asr_model = model_dir
logger.info(f"ASR Model: {str(model_dir)}")
audio = whisperx.load_audio(audio_wav)
result = load_and_transcribe_audio(
asr_model, audio, compute_type, SOURCE_LANGUAGE, asr_options, batch_size, segment_duration_limit
)
if result["language"] == "zh" and not prompt:
result["language"] = "zh-TW"
logger.info("Chinese - Traditional (zh-TW)")
return audio, result
def align_speech(audio, result):
"""
Aligns speech segments based on the provided audio and result metadata.
Parameters:
- audio (array): The audio data in a suitable format for alignment.
- result (dict): Metadata containing information about the segments
and language.
Returns:
- result (dict): Updated metadata after aligning the segments with
the audio. This includes character-level alignments if
'return_char_alignments' is set to True.
Notes:
- This function uses language-specific models to align speech segments.
- It performs language compatibility checks and selects the
appropriate alignment model.
- Cleans up memory by releasing resources after alignment.
"""
DAMHF.update(DAMT) # lang align
if (
not result["language"] in DAMHF.keys()
and not result["language"] in EXTRA_ALIGN.keys()
):
logger.warning(
"Automatic detection: Source language not compatible with align"
)
raise ValueError(
f"Detected language {result['language']} incompatible, "
"you can select the source language to avoid this error."
)
if (
result["language"] in EXTRA_ALIGN.keys()
and EXTRA_ALIGN[result["language"]] == ""
):
lang_name = (
INVERTED_LANGUAGES[result["language"]]
if result["language"] in INVERTED_LANGUAGES.keys()
else result["language"]
)
logger.warning(
"No compatible wav2vec2 model found "
f"for the language '{lang_name}', skipping alignment."
)
return result
random_sleep()
result = load_align_and_align_segments(result, audio, DAMHF)
return result
diarization_models = {
"pyannote_3.1": "pyannote/speaker-diarization-3.1",
"pyannote_2.1": "pyannote/speaker-diarization@2.1",
"disable": "",
}
def reencode_speakers(result):
if result["segments"][0]["speaker"] == "SPEAKER_00":
return result
speaker_mapping = {}
counter = 0
logger.debug("Reencode speakers")
for segment in result["segments"]:
old_speaker = segment["speaker"]
if old_speaker not in speaker_mapping:
speaker_mapping[old_speaker] = f"SPEAKER_{counter:02d}"
counter += 1
segment["speaker"] = speaker_mapping[old_speaker]
return result
def diarize_speech(
audio_wav,
result,
min_speakers,
max_speakers,
YOUR_HF_TOKEN,
model_name="pyannote/speaker-diarization@2.1",
):
"""
Performs speaker diarization on speech segments.
Parameters:
- audio_wav (array): Audio data in WAV format to perform speaker
diarization.
- result (dict): Metadata containing information about speech segments
and alignments.
- min_speakers (int): Minimum number of speakers expected in the audio.
- max_speakers (int): Maximum number of speakers expected in the audio.
- YOUR_HF_TOKEN (str): Your Hugging Face API token for model
authentication.
- model_name (str): Name of the speaker diarization model to be used
(default: "pyannote/speaker-diarization@2.1").
Returns:
- result_diarize (dict): Updated metadata after assigning speaker
labels to segments.
Notes:
- This function utilizes a speaker diarization model to label speaker
segments in the audio.
- It assigns speakers to word-level segments based on diarization results.
- Cleans up memory by releasing resources after diarization.
- If only one speaker is specified, each segment is automatically assigned
as the first speaker, eliminating the need for diarization inference.
"""
if max(min_speakers, max_speakers) > 1 and model_name:
try:
diarize_model = whisperx.DiarizationPipeline(
model_name=model_name,
use_auth_token=YOUR_HF_TOKEN,
device=os.environ.get("SONITR_DEVICE"),
)
except Exception as error:
error_str = str(error)
gc.collect()
torch.cuda.empty_cache() # noqa
if "'NoneType' object has no attribute 'to'" in error_str:
if model_name == diarization_models["pyannote_2.1"]:
raise ValueError(
"Accept the license agreement for using Pyannote 2.1."
" You need to have an account on Hugging Face and "
"accept the license to use the models: "
"https://huggingface.co/pyannote/speaker-diarization "
"and https://huggingface.co/pyannote/segmentation "
"Get your KEY TOKEN here: "
"https://hf.co/settings/tokens "
)
elif model_name == diarization_models["pyannote_3.1"]:
raise ValueError(
"New Licence Pyannote 3.1: You need to have an account"
" on Hugging Face and accept the license to use the "
"models: https://huggingface.co/pyannote/speaker-diarization-3.1 " # noqa
"and https://huggingface.co/pyannote/segmentation-3.0 "
)
else:
raise error
random_sleep()
diarize_segments = diarize_audio(diarize_model, audio_wav, min_speakers, max_speakers)
result_diarize = whisperx.assign_word_speakers(
diarize_segments, result
)
for segment in result_diarize["segments"]:
if "speaker" not in segment:
segment["speaker"] = "SPEAKER_00"
logger.warning(
f"No speaker detected in {segment['start']}. First TTS "
f"will be used for the segment text: {segment['text']} "
)
del diarize_model
gc.collect()
torch.cuda.empty_cache() # noqa
else:
result_diarize = result
result_diarize["segments"] = [
{**item, "speaker": "SPEAKER_00"}
for item in result_diarize["segments"]
]
return reencode_speakers(result_diarize)
|