videomatch / app.py
Iskaj
added new plotting logic to a new gradio tab
39557de
raw
history blame
14.1 kB
import tempfile
import urllib.request
import logging
import os
import hashlib
import datetime
import time
import pandas
import gradio as gr
from moviepy.editor import VideoFileClip
import seaborn as sns
import matplotlib.pyplot as plt
import imagehash
from PIL import Image
import numpy as np
import pandas as pd
import faiss
import shutil
FPS = 5
MIN_DISTANCE = 4
MAX_DISTANCE = 30
video_directory = tempfile.gettempdir()
def move_video_to_tempdir(input_dir, filename):
new_filename = os.path.join(video_directory, filename)
input_file = os.path.join(input_dir, filename)
if not os.path.exists(new_filename):
shutil.copyfile(input_file, new_filename)
logging.info(f"Copied {input_file} to {new_filename}.")
else:
logging.info(f"Skipping copying from {input_file} because {new_filename} already exists.")
return new_filename
def download_video_from_url(url):
"""Download video from url or return md5 hash as video name"""
filename = os.path.join(video_directory, hashlib.md5(url.encode()).hexdigest())
if not os.path.exists(filename):
with (urllib.request.urlopen(url)) as f, open(filename, 'wb') as fileout:
fileout.write(f.read())
logging.info(f"Downloaded video from {url} to {filename}.")
else:
logging.info(f"Skipping downloading from {url} because {filename} already exists.")
return filename
def change_ffmpeg_fps(clip, fps=FPS):
# Hacking the ffmpeg call based on
# https://github.com/Zulko/moviepy/blob/master/moviepy/video/io/ffmpeg_reader.py#L126
import subprocess as sp
cmd = [arg + ",fps=%d" % fps if arg.startswith("scale=") else arg for arg in clip.reader.proc.args]
clip.reader.close()
clip.reader.proc = sp.Popen(cmd, bufsize=clip.reader.bufsize,
stdout=sp.PIPE, stderr=sp.PIPE, stdin=sp.DEVNULL)
clip.fps = clip.reader.fps = fps
clip.reader.lastread = clip.reader.read_frame()
return clip
def compute_hash(frame, hash_size=16):
image = Image.fromarray(np.array(frame))
return imagehash.phash(image, hash_size)
def binary_array_to_uint8s(arr):
bit_string = ''.join(str(1 * x) for l in arr for x in l)
return [int(bit_string[i:i+8], 2) for i in range(0, len(bit_string), 8)]
def compute_hashes(clip, fps=FPS):
for index, frame in enumerate(change_ffmpeg_fps(clip, fps).iter_frames()):
# Each frame is a triplet of size (height, width, 3) of the video since it is RGB
# The hash itself is of size (hash_size, hash_size)
# The uint8 version of the hash is of size (hash_size * highfreq_factor,) and represents the hash
hashed = np.array(binary_array_to_uint8s(compute_hash(frame).hash), dtype='uint8')
yield {"frame": 1+index*fps, "hash": hashed}
def index_hashes_for_video(url, is_file = False):
if not is_file:
filename = download_video_from_url(url)
else:
filename = url
if os.path.exists(f'{filename}.index'):
logging.info(f"Loading indexed hashes from {filename}.index")
binary_index = faiss.read_index_binary(f'{filename}.index')
logging.info(f"Index {filename}.index has in total {binary_index.ntotal} frames")
return binary_index
hash_vectors = np.array([x['hash'] for x in compute_hashes(VideoFileClip(filename))])
logging.info(f"Computed hashes for {hash_vectors.shape} frames.")
# Initializing the quantizer.
quantizer = faiss.IndexBinaryFlat(hash_vectors.shape[1]*8)
# Initializing index.
index = faiss.IndexBinaryIVF(quantizer, hash_vectors.shape[1]*8, min(16, hash_vectors.shape[0]))
index.nprobe = 1 # Number of nearest clusters to be searched per query.
# Training the quantizer.
index.train(hash_vectors)
#index = faiss.IndexBinaryFlat(64)
index.add(hash_vectors)
faiss.write_index_binary(index, f'{filename}.index')
logging.info(f"Indexed hashes for {index.ntotal} frames to {filename}.index.")
return index
def get_video_indices(url, target, MIN_DISTANCE = 4):
"""" The comparison between the target and the original video will be plotted based
on the matches between the target and the original video over time. The matches are determined
based on the minimum distance between hashes (as computed by faiss-vectors) before they're considered a match.
args:
- url: url of the source video (short video which you want to be checked)
- target: url of the target video (longer video which is a superset of the source video)
- MIN_DISTANCE: integer representing the minimum distance between hashes on bit-level before its considered a match
"""
# TODO: Fix crash if no matches are found
if url.endswith('dl=1'):
is_file = False
elif url.endswith('.mp4'):
is_file = True
# Url (short video)
video_index = index_hashes_for_video(url, is_file)
video_index.make_direct_map() # Make sure the index is indexable
hash_vectors = np.array([video_index.reconstruct(i) for i in range(video_index.ntotal)]) # Retrieve original indices
# Target video (long video)
target_indices = [index_hashes_for_video(x) for x in [target]]
return video_index, hash_vectors, target_indices
def compare_videos(video_index, hash_vectors, target_indices, MIN_DISTANCE = 3): # , is_file = False):
# The results are returned as a triplet of 1D arrays
# lims, D, I, where result for query i is in I[lims[i]:lims[i+1]]
# (indices of neighbors), D[lims[i]:lims[i+1]] (distances).
lims, D, I = target_indices[0].range_search(hash_vectors, MIN_DISTANCE)
return lims, D, I, hash_vectors
def get_decent_distance(url, target, MIN_DISTANCE, MAX_DISTANCE):
""" To get a decent heurstic for a base distance check every distance from MIN_DISTANCE to MAX_DISTANCE
until the number of matches found is equal to or higher than the number of frames in the source video"""
for distance in np.arange(start = MIN_DISTANCE - 2, stop = MAX_DISTANCE + 2, step = 2, dtype=int):
distance = int(distance)
video_index, hash_vectors, target_indices = get_video_indices(url, target, MIN_DISTANCE = distance)
lims, D, I, hash_vectors = compare_videos(video_index, hash_vectors, target_indices, MIN_DISTANCE = distance)
nr_source_frames = video_index.ntotal
nr_matches = len(D)
logging.info(f"{(nr_matches/nr_source_frames) * 100.0:.1f}% of frames have a match for distance '{distance}' ({nr_matches} matches for {nr_source_frames} frames)")
if nr_matches >= nr_source_frames:
return distance
def plot_comparison(lims, D, I, hash_vectors, MIN_DISTANCE = 3):
sns.set_theme()
x = [(lims[i+1]-lims[i]) * [i] for i in range(hash_vectors.shape[0])]
x = [i/FPS for j in x for i in j]
y = [i/FPS for i in I]
# Create figure and dataframe to plot with sns
fig = plt.figure()
# plt.tight_layout()
df = pd.DataFrame(zip(x, y), columns = ['X', 'Y'])
g = sns.scatterplot(data=df, x='X', y='Y', s=2*(1-D/(MIN_DISTANCE+1)), alpha=1-D/MIN_DISTANCE)
# Set x-labels to be more readable
x_locs, x_labels = plt.xticks() # Get original locations and labels for x ticks
x_labels = [time.strftime('%H:%M:%S', time.gmtime(x)) for x in x_locs]
plt.xticks(x_locs, x_labels)
plt.xticks(rotation=90)
plt.xlabel('Time in source video (H:M:S)')
plt.xlim(0, None)
# Set y-labels to be more readable
y_locs, y_labels = plt.yticks() # Get original locations and labels for x ticks
y_labels = [time.strftime('%H:%M:%S', time.gmtime(y)) for y in y_locs]
plt.yticks(y_locs, y_labels)
plt.ylabel('Time in target video (H:M:S)')
# Adjust padding to fit gradio
plt.subplots_adjust(bottom=0.25, left=0.20)
return fig
logging.basicConfig()
logging.getLogger().setLevel(logging.INFO)
def plot_multi_comparison(df):
fig, ax_arr = plt.subplots(3, 2, figsize=(12, 6), dpi=100, sharex=True) # , ax=axes[1]
# plt.scatter(x=df['TARGET_S'], y = df['SOURCE_S'], ax=ax_arr[0])
# plt.scatter(x=df['TARGET_S'], y = df['SOURCE_S'], ax=ax_arr[1])
sns.scatterplot(data = df, x='TARGET_S', y='SOURCE_S', ax=ax_arr[0,0])
sns.lineplot(data = df, x='TARGET_S', y='SOURCE_LIP_S', ax=ax_arr[0,1])
sns.scatterplot(data = df, x='TARGET_S', y='TIMESHIFT', ax=ax_arr[1,0])
sns.lineplot(data = df, x='TARGET_S', y='TIMESHIFT_LIP', ax=ax_arr[1,1])
sns.scatterplot(data = df, x='TARGET_S', y='OFFSET', ax=ax_arr[2,0])
sns.lineplot(data = df, x='TARGET_S', y='OFFSET_LIP', ax=ax_arr[2,1])
return fig
def get_videomatch_df(url, target, min_distance=MIN_DISTANCE, vanilla_df=False):
distance = get_decent_distance(url, target, MIN_DISTANCE, MAX_DISTANCE)
video_index, hash_vectors, target_indices = get_video_indices(url, target, MIN_DISTANCE = distance)
lims, D, I, hash_vectors = compare_videos(video_index, hash_vectors, target_indices, MIN_DISTANCE = distance)
target = [(lims[i+1]-lims[i]) * [i] for i in range(hash_vectors.shape[0])]
target_s = [i/FPS for j in target for i in j]
source_s = [i/FPS for i in I]
# Make df
df = pd.DataFrame(zip(target_s, source_s, D, I), columns = ['TARGET_S', 'SOURCE_S', 'DISTANCE', 'INDICES'])
if vanilla_df:
return df
# Minimum distance dataframe ----
# Group by X so for every second/x there will be 1 value of Y in the end
# index_min_distance = df.groupby('TARGET_S')['DISTANCE'].idxmin()
# df_min = df.loc[index_min_distance]
# df_min
# -------------------------------
df['TARGET_WEIGHT'] = 1 - df['DISTANCE']/distance # Higher value means a better match
df['SOURCE_WEIGHTED_VALUE'] = df['SOURCE_S'] * df['TARGET_WEIGHT'] # Multiply the weight (which indicates a better match) with the value for Y and aggregate to get a less noisy estimate of Y
# Group by X so for every second/x there will be 1 value of Y in the end
grouped_X = df.groupby('TARGET_S').agg({'SOURCE_WEIGHTED_VALUE' : 'sum', 'TARGET_WEIGHT' : 'sum'})
grouped_X['FINAL_SOURCE_VALUE'] = grouped_X['SOURCE_WEIGHTED_VALUE'] / grouped_X['TARGET_WEIGHT']
# Remake the dataframe
df = grouped_X.reset_index()
df = df.drop(columns=['SOURCE_WEIGHTED_VALUE', 'TARGET_WEIGHT'])
df = df.rename({'FINAL_SOURCE_VALUE' : 'SOURCE_S'}, axis='columns')
# Add NAN to "missing" x values (base it off hash vector, not target_s)
step_size = 1/FPS
x_complete = np.round(np.arange(start=0.0, stop = max(df['TARGET_S'])+step_size, step = step_size), 1) # More robust
df['TARGET_S'] = np.round(df['TARGET_S'], 1)
df_complete = pd.DataFrame(x_complete, columns=['TARGET_S'])
# Merge dataframes to get NAN values for every missing SOURCE_S
df = df_complete.merge(df, on='TARGET_S', how='left')
# Interpolate between frames since there are missing values
df['SOURCE_LIP_S'] = df['SOURCE_S'].interpolate(method='linear', limit_direction='both', axis=0)
# Add timeshift col and timeshift col with Linearly Interpolated Values
df['TIMESHIFT'] = df['SOURCE_S'].shift(1) - df['SOURCE_S']
df['TIMESHIFT_LIP'] = df['SOURCE_LIP_S'].shift(1) - df['SOURCE_LIP_S']
# Add Offset col that assumes the video is played at the same speed as the other to do a "timeshift"
df['OFFSET'] = df['SOURCE_S'] - df['TARGET_S'] - np.min(df['SOURCE_S'])
df['OFFSET_LIP'] = df['SOURCE_LIP_S'] - df['TARGET_S'] - np.min(df['SOURCE_LIP_S'])
return df
def get_comparison(url, target, MIN_DISTANCE = 4):
""" Function for Gradio to combine all helper functions"""
video_index, hash_vectors, target_indices = get_video_indices(url, target, MIN_DISTANCE = MIN_DISTANCE)
lims, D, I, hash_vectors = compare_videos(video_index, hash_vectors, target_indices, MIN_DISTANCE = MIN_DISTANCE)
fig = plot_comparison(lims, D, I, hash_vectors, MIN_DISTANCE = MIN_DISTANCE)
return fig
def get_auto_comparison(url, target, MIN_DISTANCE = MIN_DISTANCE):
""" Function for Gradio to combine all helper functions"""
distance = get_decent_distance(url, target, MIN_DISTANCE, MAX_DISTANCE)
video_index, hash_vectors, target_indices = get_video_indices(url, target, MIN_DISTANCE = distance)
lims, D, I, hash_vectors = compare_videos(video_index, hash_vectors, target_indices, MIN_DISTANCE = distance)
# fig = plot_comparison(lims, D, I, hash_vectors, MIN_DISTANCE = distance)
df = get_videomatch_df(url, target, min_distance=MIN_DISTANCE, vanilla_df=False)
fig = plot_multi_comparison(df)
return fig
video_urls = ["https://www.dropbox.com/s/8c89a9aba0w8gjg/Ploumen.mp4?dl=1",
"https://www.dropbox.com/s/rzmicviu1fe740t/Bram%20van%20Ojik%20krijgt%20reprimande.mp4?dl=1",
"https://www.dropbox.com/s/wcot34ldmb84071/Baudet%20ontmaskert%20Omtzigt_%20u%20bent%20door%20de%20mand%20gevallen%21.mp4?dl=1",
"https://www.dropbox.com/s/4ognq8lshcujk43/Plenaire_zaal_20200923132426_Omtzigt.mp4?dl=1"]
index_iface = gr.Interface(fn=lambda url: index_hashes_for_video(url).ntotal,
inputs="text", outputs="text",
examples=video_urls, cache_examples=True)
compare_iface = gr.Interface(fn=get_comparison,
inputs=["text", "text", gr.Slider(2, 30, 4, step=2)], outputs="plot",
examples=[[x, video_urls[-1]] for x in video_urls[:-1]])
auto_compare_iface = gr.Interface(fn=get_auto_comparison,
inputs=["text", "text"], outputs="plot",
examples=[[x, video_urls[-1]] for x in video_urls[:-1]])
iface = gr.TabbedInterface([index_iface, compare_iface, auto_compare_iface], ["Index", "Compare", "AutoCompare"])
if __name__ == "__main__":
import matplotlib
matplotlib.use('SVG') # To be able to plot in gradio
logging.basicConfig()
logging.getLogger().setLevel(logging.INFO)
iface.launch()
#iface.launch(auth=("test", "test"), share=True, debug=True)