|
from dataclasses import dataclass, make_dataclass |
|
from enum import Enum |
|
|
|
from src.about import Tasks |
|
|
|
def fields(raw_class): |
|
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] |
|
|
|
|
|
|
|
|
|
|
|
@dataclass |
|
class ColumnContent: |
|
name: str |
|
type: str |
|
displayed_by_default: bool |
|
hidden: bool = False |
|
never_hidden: bool = False |
|
never_displayed: bool = False |
|
|
|
|
|
auto_eval_column_dict = [] |
|
|
|
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("Type Symbol", "str", True, never_hidden=True)]) |
|
|
|
auto_eval_column_dict.append(["retrieval_model", ColumnContent, ColumnContent("Retrieval Model Plain", "markdown", False, never_displayed=True)]) |
|
auto_eval_column_dict.append(["generative_model", ColumnContent, ColumnContent("Generative Model Plain", "markdown", False, never_displayed=True)]) |
|
auto_eval_column_dict.append(["retrieval_model_link", ColumnContent, ColumnContent("Retrieval Model", "markdown", True, never_hidden=True)]) |
|
auto_eval_column_dict.append(["generative_model_link", ColumnContent, ColumnContent("Generative Model", "markdown", True, never_hidden=True)]) |
|
|
|
|
|
auto_eval_column_dict.append(["gen_average", ColumnContent, ColumnContent("Gen Average ⬆️", "number", True)]) |
|
auto_eval_column_dict.append(["ret_average", ColumnContent, ColumnContent("Ret Average ⬆️", "number", True)]) |
|
for task in Tasks: |
|
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)]) |
|
|
|
|
|
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)]) |
|
|
|
|
|
|
|
|
|
auto_eval_column_dict.append(["gen_num_params", ColumnContent, ColumnContent("Gen#Params (B)", "number", False)]) |
|
auto_eval_column_dict.append(["ret_num_params", ColumnContent, ColumnContent("Ret#Params (B)", "number", False)]) |
|
|
|
|
|
|
|
|
|
|
|
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) |
|
EvalQueueColumn = make_dataclass("EvalQueueColumn", auto_eval_column_dict, frozen=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass |
|
class ModelDetails: |
|
name: str |
|
display_name: str = "" |
|
symbol: str = "" |
|
|
|
|
|
class ModelType(Enum): |
|
OpenSource = ModelDetails(name="open-source", symbol="🟢") |
|
|
|
ClosedSource = ModelDetails(name="closed-source", symbol="⭕") |
|
|
|
Unknown = ModelDetails(name="", symbol="?") |
|
|
|
def to_str(self, separator=" "): |
|
return f"{self.value.symbol}{separator}{self.value.name}" |
|
|
|
@staticmethod |
|
def from_str(type): |
|
if "open-source" in type or "🟢" in type: |
|
return ModelType.OpenSource |
|
if "closed-source" in type or "⭕" in type: |
|
return ModelType.ClosedSource |
|
return ModelType.Unknown |
|
|
|
class WeightType(Enum): |
|
Adapter = ModelDetails("Adapter") |
|
Original = ModelDetails("Original") |
|
Delta = ModelDetails("Delta") |
|
|
|
class Precision(Enum): |
|
float16 = ModelDetails("float16") |
|
bfloat16 = ModelDetails("bfloat16") |
|
Unknown = ModelDetails("?") |
|
|
|
def from_str(precision): |
|
if precision in ["torch.float16", "float16"]: |
|
return Precision.float16 |
|
if precision in ["torch.bfloat16", "bfloat16"]: |
|
return Precision.bfloat16 |
|
return Precision.Unknown |
|
|
|
|
|
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden] |
|
|
|
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] |
|
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] |
|
|
|
BENCHMARK_COLS = [t.value.col_name for t in Tasks] |
|
|
|
|