Spaces:
Runtime error
Runtime error
File size: 12,872 Bytes
f714b01 c197986 f714b01 b454fd9 e2b275b 1d5e556 e2b275b a71493c 1d5e556 f714b01 e2b275b f714b01 e2b275b f714b01 e2b275b f714b01 e2b275b f714b01 e2b275b f714b01 e2b275b f714b01 1d5e556 f714b01 1d5e556 3bcbfb1 f714b01 3bcbfb1 e2b275b 3bcbfb1 c197986 ab56f98 3bcbfb1 f714b01 c4f1727 3cfe4db c4f1727 c197986 3700545 c197986 3700545 c197986 3700545 c197986 3700545 c197986 e2b275b c197986 e2b275b c197986 3cfe4db c197986 42f158b c197986 ab56f98 c197986 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import gradio as gr
import os, gc, copy, torch
from datetime import datetime
from huggingface_hub import hf_hub_download
from pynvml import *
nvmlInit()
gpu_h = nvmlDeviceGetHandleByIndex(0)
ctx_limit = 1536
title = "RWKV-4-World-7B-v1-OnlyForTest_84%_trained-20230618-ctx4096"
os.environ["RWKV_JIT_ON"] = '1'
os.environ["RWKV_CUDA_ON"] = '1' # if '1' then use CUDA kernel for seq mode (much faster)
from rwkv.model import RWKV
model_path = hf_hub_download(repo_id="BlinkDL/rwkv-4-world", filename=f"{title}.pth")
model = RWKV(model=model_path, strategy='cuda fp16i8 *8 -> cuda fp16')
from rwkv.utils import PIPELINE, PIPELINE_ARGS
pipeline = PIPELINE(model, "20B_tokenizer.json")
def generate_prompt(instruction, input=None):
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n').replace('\n\n','\n')
input = input.strip().replace('\r\n','\n').replace('\n\n','\n').replace('\n\n','\n')
if input:
return f"""Instruction: {instruction}
Input: {input}
Response:"""
else:
return f"""Question: {instruction}
Answer:"""
def evaluate(
instruction,
input=None,
token_count=200,
temperature=1.0,
top_p=0.7,
presencePenalty = 0.1,
countPenalty = 0.1,
):
args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
alpha_frequency = countPenalty,
alpha_presence = presencePenalty,
token_ban = [], # ban the generation of some tokens
token_stop = [0]) # stop generation whenever you see any token here
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n').replace('\n\n','\n')
input = input.strip().replace('\r\n','\n').replace('\n\n','\n').replace('\n\n','\n')
ctx = generate_prompt(instruction, input)
all_tokens = []
out_last = 0
out_str = ''
occurrence = {}
state = None
for i in range(int(token_count)):
out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state)
for n in occurrence:
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
if token in args.token_stop:
break
all_tokens += [token]
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
tmp = pipeline.decode(all_tokens[out_last:])
if '\ufffd' not in tmp:
out_str += tmp
yield out_str.strip()
out_last = i + 1
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
print(f'vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
del out
del state
gc.collect()
torch.cuda.empty_cache()
yield out_str.strip()
examples = [
["Tell me about ravens.", "", 300, 1.2, 0.5, 0.4, 0.4],
["Write a python function to mine 1 BTC, with details and comments.", "", 300, 1.2, 0.5, 0.4, 0.4],
["Write a song about ravens.", "", 300, 1.2, 0.5, 0.4, 0.4],
["Explain the following metaphor: Life is like cats.", "", 300, 1.2, 0.5, 0.4, 0.4],
["Write a story using the following information", "A man named Alex chops a tree down", 300, 1.2, 0.5, 0.4, 0.4],
["Generate a list of adjectives that describe a person as brave.", "", 300, 1.2, 0.5, 0.4, 0.4],
["You have $100, and your goal is to turn that into as much money as possible with AI and Machine Learning. Please respond with detailed plan.", "", 300, 1.2, 0.5, 0.4, 0.4],
]
##########################################################################
chat_intro = '''The following is a coherent verbose detailed conversation between <|user|> and an AI girl named <|bot|>.
<|user|>: Hi <|bot|>, Would you like to chat with me for a while?
<|bot|>: Hi <|user|>. Sure. What would you like to talk about? I'm listening.
'''
def user(message, chatbot):
chatbot = chatbot or []
# print(f"User: {message}")
return "", chatbot + [[message, None]]
def alternative(chatbot, history):
if not chatbot or not history:
return chatbot, history
chatbot[-1][1] = None
history[0] = copy.deepcopy(history[1])
return chatbot, history
def chat(
prompt,
user,
bot,
chatbot,
history,
temperature=1.0,
top_p=0.8,
presence_penalty=0.1,
count_penalty=0.1,
):
args = PIPELINE_ARGS(temperature=max(0.2, float(temperature)), top_p=float(top_p),
alpha_frequency=float(count_penalty),
alpha_presence=float(presence_penalty),
token_ban=[], # ban the generation of some tokens
token_stop=[]) # stop generation whenever you see any token here
if not chatbot:
return chatbot, history
message = chatbot[-1][0]
message = message.strip().replace('\r\n','\n').replace('\n\n','\n')
ctx = f"{user}: {message}\n\n{bot}:"
if not history:
prompt = prompt.replace("<|user|>", user.strip())
prompt = prompt.replace("<|bot|>", bot.strip())
prompt = prompt.strip()
prompt = f"\n{prompt}\n\n"
out, state = model.forward(pipeline.encode(prompt), None)
history = [state, None, []] # [state, state_pre, tokens]
# print("History reloaded.")
[state, _, all_tokens] = history
state_pre_0 = copy.deepcopy(state)
out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:], state)
state_pre_1 = copy.deepcopy(state) # For recovery
# print("Bot:", end='')
begin = len(all_tokens)
out_last = begin
out_str: str = ''
occurrence = {}
for i in range(300):
if i <= 0:
nl_bias = -float('inf')
elif i <= 30:
nl_bias = (i - 30) * 0.1
elif i <= 130:
nl_bias = 0
else:
nl_bias = (i - 130) * 0.25
out[187] += nl_bias
for n in occurrence:
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
next_tokens = [token]
if token == 0:
next_tokens = pipeline.encode('\n\n')
all_tokens += next_tokens
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
out, state = model.forward(next_tokens, state)
tmp = pipeline.decode(all_tokens[out_last:])
if '\ufffd' not in tmp:
# print(tmp, end='', flush=True)
out_last = begin + i + 1
out_str += tmp
chatbot[-1][1] = out_str.strip()
history = [state, all_tokens]
yield chatbot, history
out_str = pipeline.decode(all_tokens[begin:])
out_str = out_str.replace("\r\n", '\n').replace('\\n', '\n')
if '\n\n' in out_str:
break
# State recovery
if f'{user}:' in out_str or f'{bot}:' in out_str:
idx_user = out_str.find(f'{user}:')
idx_user = len(out_str) if idx_user == -1 else idx_user
idx_bot = out_str.find(f'{bot}:')
idx_bot = len(out_str) if idx_bot == -1 else idx_bot
idx = min(idx_user, idx_bot)
if idx < len(out_str):
out_str = f" {out_str[:idx].strip()}\n\n"
tokens = pipeline.encode(out_str)
all_tokens = all_tokens[:begin] + tokens
out, state = model.forward(tokens, state_pre_1)
break
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
print(f'vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
gc.collect()
torch.cuda.empty_cache()
chatbot[-1][1] = out_str.strip()
history = [state, state_pre_0, all_tokens]
yield chatbot, history
##########################################################################
with gr.Blocks(title=title) as demo:
gr.HTML(f"<div style=\"text-align: center;\">\n<h1>🌍World - {title}</h1>\n</div>")
with gr.Tab("Instruct mode"):
gr.Markdown(f"World is [RWKV 7B](https://github.com/BlinkDL/ChatRWKV) 100% RNN [RWKV-LM](https://github.com/BlinkDL/RWKV-LM) trained on 100+ world languages. *** Please try examples first (bottom of page) *** (edit them to use your question). Demo limited to ctxlen {ctx_limit}. Finetuned on alpaca, gpt4all, codealpaca and more. For best results, *** keep you prompt short and clear ***.</b>.") # <b>UPDATE: now with Chat (see above, as a tab) ==> turn off as of now due to VRAM leak caused by buggy code.
with gr.Row():
with gr.Column():
instruction = gr.Textbox(lines=2, label="Instruction", value="Tell me about ravens.")
input = gr.Textbox(lines=2, label="Input", placeholder="none")
token_count = gr.Slider(10, 300, label="Max Tokens", step=10, value=300)
temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=1.2)
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.5)
presence_penalty = gr.Slider(0.0, 1.0, label="Presence Penalty", step=0.1, value=0.4)
count_penalty = gr.Slider(0.0, 1.0, label="Count Penalty", step=0.1, value=0.4)
with gr.Column():
with gr.Row():
submit = gr.Button("Submit", variant="primary")
clear = gr.Button("Clear", variant="secondary")
output = gr.Textbox(label="Output", lines=5)
data = gr.Dataset(components=[instruction, input, token_count, temperature, top_p, presence_penalty, count_penalty], samples=examples, label="Example Instructions", headers=["Instruction", "Input", "Max Tokens", "Temperature", "Top P", "Presence Penalty", "Count Penalty"])
submit.click(evaluate, [instruction, input, token_count, temperature, top_p, presence_penalty, count_penalty], [output])
clear.click(lambda: None, [], [output])
data.click(lambda x: x, [data], [instruction, input, token_count, temperature, top_p, presence_penalty, count_penalty])
# with gr.Tab("Chat (Experimental - Might be buggy - use ChatRWKV for reference)"):
# gr.Markdown(f'''<b>*** The length of response is restricted in this demo. Use ChatRWKV for longer generations. ***</b> Say "go on" or "continue" can sometimes continue the response. If you'd like to edit the scenario, make sure to follow the exact same format: empty lines between (and only between) different speakers. Changes only take effect after you press [Clear]. <b>The default "Bob" & "Alice" names work the best.</b>''', label="Description")
# with gr.Row():
# with gr.Column():
# chatbot = gr.Chatbot()
# state = gr.State()
# message = gr.Textbox(label="Message", value="Write me a python code to land on moon.")
# with gr.Row():
# send = gr.Button("Send", variant="primary")
# alt = gr.Button("Alternative", variant="secondary")
# clear = gr.Button("Clear", variant="secondary")
# with gr.Column():
# with gr.Row():
# user_name = gr.Textbox(lines=1, max_lines=1, label="User Name", value="Bob")
# bot_name = gr.Textbox(lines=1, max_lines=1, label="Bot Name", value="Alice")
# prompt = gr.Textbox(lines=10, max_lines=50, label="Scenario", value=chat_intro)
# temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=1.2)
# top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.5)
# presence_penalty = gr.Slider(0.0, 1.0, label="Presence Penalty", step=0.1, value=0.4)
# count_penalty = gr.Slider(0.0, 1.0, label="Count Penalty", step=0.1, value=0.4)
# chat_inputs = [
# prompt,
# user_name,
# bot_name,
# chatbot,
# state,
# temperature,
# top_p,
# presence_penalty,
# count_penalty
# ]
# chat_outputs = [chatbot, state]
# message.submit(user, [message, chatbot], [message, chatbot], queue=False).then(chat, chat_inputs, chat_outputs)
# send.click(user, [message, chatbot], [message, chatbot], queue=False).then(chat, chat_inputs, chat_outputs)
# alt.click(alternative, [chatbot, state], [chatbot, state], queue=False).then(chat, chat_inputs, chat_outputs)
# clear.click(lambda: ([], None, ""), [], [chatbot, state, message], queue=False)
demo.queue(concurrency_count=1, max_size=10)
demo.launch(share=False)
|