import gradio as gr import os, gc, torch from datetime import datetime from huggingface_hub import hf_hub_download from pynvml import * nvmlInit() gpu_h = nvmlDeviceGetHandleByIndex(0) ctx_limit = 1024 title = "RWKV-4-Pile-7B-Instruct-test4-20230326" os.environ["RWKV_JIT_ON"] = '1' os.environ["RWKV_CUDA_ON"] = '1' # if '1' then use CUDA kernel for seq mode (much faster) from rwkv.model import RWKV model_path = hf_hub_download(repo_id="BlinkDL/rwkv-4-pile-7b", filename=f"{title}.pth") model = RWKV(model=model_path, strategy='cuda fp16i8 *20 -> cuda fp16') from rwkv.utils import PIPELINE, PIPELINE_ARGS pipeline = PIPELINE(model, "20B_tokenizer.json") def generate_prompt(instruction, input=None): if input: return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. # Instruction: {instruction} # Input: {input} # Response: """ else: return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. # Instruction: {instruction} # Response: """ def evaluate( instruction, input=None, token_count=200, temperature=1.0, top_p=0.7, **kwargs, ): prompt = generate_prompt(instruction, input) return prompt g = gr.Interface( fn=evaluate, inputs=[ gr.components.Textbox(lines=2, label="Instruction", value="Tell me about alpacas."), gr.components.Textbox(lines=2, label="Input", placeholder="none"), gr.components.Slider(minimum=10, maximum=250, step=10, value=200), gr.components.Slider(minimum=0.2, maximum=2.0, step=0.1, value=1.0), gr.components.Slider(minimum=0, maximum=1, step=0.05, value=0.7), ], outputs=[ gr.inputs.Textbox( lines=5, label="Output", ) ], title="🐦Raven-RWKV 7B", description="Raven-RWKV 7B is [RWKV 7B](https://github.com/BlinkDL/ChatRWKV) finetuned to follow instructions. It is trained on the [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) dataset and more.", ) g.queue(concurrency_count=1, max_size=10) g.launch(share=False)