File size: 6,318 Bytes
1ccd1a1
 
 
 
 
 
 
 
 
0fa3d42
1ccd1a1
 
 
 
 
 
 
0fa3d42
 
 
 
 
b0c72ac
1ccd1a1
 
 
 
 
 
 
 
 
 
 
 
0fa3d42
 
 
1ccd1a1
0fa3d42
 
 
1ccd1a1
0fa3d42
1ccd1a1
0fa3d42
 
 
1ccd1a1
0fa3d42
 
 
1ccd1a1
0fa3d42
 
1ccd1a1
 
0fa3d42
 
 
 
 
 
 
 
 
1ccd1a1
 
 
 
0fa3d42
1ccd1a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fa3d42
 
 
1ccd1a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fa3d42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70ff848
0fa3d42
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import pandas as pd
import yfinance as yf
import numpy as np
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from sklearn.cluster import AgglomerativeClustering
import streamlit as st
import requests
from streamlit_lottie import st_lottie
import datetime

st.set_page_config(page_title = "Support and resistance levels",
                   page_icon = ':📈:',
                   layout = 'wide')

st.title('📈 Technical analysis 📉')
st.header('Find support and resistance levels for :blue[price action] analysis!')
st.markdown('''<span style="font-size:18px; font-weight:500;">
This demo includes an implemented <em>Agglomerative Clustering</em>
algorithm that can assist you in automatically detecting 
potential support and resistance levels in financial markets.
</span>''', unsafe_allow_html = True)
st.markdown('##')

def load_lottieurl(url: str):
    r = requests.get(url)
    if r.status_code != 200:
        return None
    return r.json()

lottie_url__money = "https://assets1.lottiefiles.com/packages/lf20_06a6pf9i.json"
lottie_money = load_lottieurl(lottie_url__money)

st.sidebar.header('Please choose parameters: ')

ticker = st.text_input('''Select stock to analyse: 
(Make sure the ticker you search for is supported 
by _Yahoo! Finance_).''', 'BNB-USD')

interval = st.sidebar.selectbox(
    'Select the time interval',
    ('1d', '5d', '1wk', '1mo', '3mo'))

timedelta = {'1d': 1, '5d': 5, '1wk' : 7, '1mo' : 30, '3mo' : 90}

start = st.sidebar.date_input(
    "Select the beginning date",
    datetime.date(2022, 1, 1))

end = st.sidebar.date_input(
    "Select the ending date",
    datetime.date(2023, 1, 1), min_value = start + datetime.timedelta(timedelta[interval]))

df = yf.download(ticker, start = start, end = end, interval = interval)
df.index = pd.to_datetime(df.index).strftime("%d-%m-%Y")
df = df.drop(columns = ["Adj Close"])

num_clusters = st.sidebar.slider(
    'Select the number of clusters (affects number of levels you will get)',
    1, 7, 3)

rolling_wave_length = st.sidebar.slider(
    '''Select the length of rolling wave 
    (select more the more long-term biased you are)''',
    1, len(df)//5, 1)

left_column, right_column = st.columns(2)

left_column.markdown('<span style="font-size:20px; font-weight:600; letter-spacing:2px;">Preview data:</span>',
            unsafe_allow_html = True)
left_column.dataframe(df, height = 400, use_container_width=True)

with right_column:
    st_lottie(lottie_money, key="money")

#creating function
def calculate_support_resistance(df, rolling_wave_length, num_clusters):
    date = df.index
    df.reset_index(inplace=True)
    
    max_waves_temp = df.High.rolling(rolling_wave_length).max().rename('waves')
    min_waves_temp = df.Low.rolling(rolling_wave_length).min().rename('waves')
   
    max_waves = pd.concat([max_waves_temp, pd.Series(np.zeros(len(max_waves_temp)) + 1)], axis=1)
    min_waves = pd.concat([min_waves_temp, pd.Series(np.zeros(len(min_waves_temp)) + -1)], axis=1)
    max_waves.drop_duplicates('waves', inplace=True)
    min_waves.drop_duplicates('waves', inplace=True)
    
    waves = pd.concat([max_waves, min_waves]).sort_index()
    waves = waves[waves[0] != waves[0].shift()].dropna()
    
    x = np.concatenate((waves.waves.values.reshape(-1, 1),
                        (np.zeros(len(waves)) + 1).reshape(-1, 1)), axis=1)
    
    cluster = AgglomerativeClustering(n_clusters=num_clusters, linkage='ward')
    cluster.fit_predict(x)
    waves['clusters'] = cluster.labels_
    waves2 = waves.loc[waves.groupby('clusters')['waves'].idxmax()]
    df.index = date
    waves2.waves.drop_duplicates(keep='first', inplace=True)
    
    return waves2.reset_index().waves
support_resistance_levels = calculate_support_resistance(df, rolling_wave_length, num_clusters)

#creating a plot
fig = make_subplots(rows=2, cols=1, shared_xaxes=True, 
               vertical_spacing=0.06, subplot_titles=('OHLC', 'Volume'), 
               row_width=[0.3, 0.7])

fig.add_trace(go.Candlestick(x=df.index,
                open=df['Open'],
                high=df['High'],
                low=df['Low'],
                close=df['Close'], name = "Market data"), row = 1, col = 1)

i = 0
for level in support_resistance_levels.to_list():
    fig.add_hline(y=level, line_width=1, 
                  line_dash="dash", row=1, col=1,
                  line_color="snow")
    i += 1

fig.update_xaxes(
    rangeslider_visible = False)

colors = []

for i in range(len(df.Close)):
    if i != 0:
        if df.Close[i] > df.Close[i-1]:
            colors.append('lightgreen')
        else:
            colors.append('lightcoral')
    else:
        colors.append('lightcoral')

fig.add_trace(go.Bar(x=df.index, y=df['Volume'], showlegend=False, 
                     marker=dict(color=colors)), row=2, col=1)

fig.update_traces(name= 'Volume', selector=dict(type='bar'))

text = f'{ticker} Chart'

fig.update_layout(
    title=go.layout.Title(
        text=text,
        xref="paper",
        x=0))

#show chart
st.plotly_chart(fig, use_container_width=True)

st.markdown("""<span style="font-size:13px; font-weight:400;">
Disclaimer: It's important to note that while this demonstration provides a useful approach to 
identifying support and resistance levels in financial markets, 
it is not intended to be taken as financial advice. 
Trading decisions should be made based on careful analysis of multiple factors, 
including market conditions, 
risk tolerance, 
and individual financial goals.
</span>""", unsafe_allow_html=True)

hide_streamlit_style = """
            <style>
            footer {visibility: hidden;}
            </style>
            """
st.markdown(hide_streamlit_style, unsafe_allow_html=True) 

st.markdown('''
            <div style="position: relative; bottom: 0px; width: 100%;">
                <span class="e1_33">
                    <p style="text-align:center">
                        Designed with ❤️ by 
                        <a href="https://www.linkedin.com/in/amelia-doli%C5%84ska-55613a270/">
                        <em>
                        Amelia Dolińska
                        </em>
                        </a> 
                    </p>
                </span>
            </div>
            ''',
            unsafe_allow_html=True)