Tushar Malik commited on
Commit
6b10c76
·
verified ·
1 Parent(s): 2a6e0d9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +545 -56
app.py CHANGED
@@ -1,63 +1,552 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
 
17
  ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
  ],
 
 
59
  )
60
 
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
+ # Cell 2: Import necessary libraries
2
+ import time
3
+ import fitz # PyMuPDF
4
+ import numpy as np
5
+ import pickle
6
+ import os
7
+ import dill
8
+ import logging
9
+ import asyncio
10
+ import networkx as nx # Import networkx here
11
+ from mistralai import Mistral
12
+ from annoy import AnnoyIndex
13
+ from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
14
+ from sklearn.metrics.pairwise import cosine_similarity, euclidean_distances
15
+ from sklearn.preprocessing import normalize
16
+ from rank_bm25 import BM25Okapi
17
+ from gensim.models import Word2Vec
18
+ from typing import List, Optional, Tuple
19
 
20
+ # Cell 3: Set up logging and Mistral client
21
+ logger = logging.getLogger(__name__)
22
+ api_key = "VtyTFrel7S9KXsTUc9JuJ6CIPr8WK9r3"
23
+ client = Mistral(api_key=api_key)
24
 
25
+ # Cell 4: Function to get embeddings with rate limiting
26
+ def get_text_embedding_with_rate_limit(text_list, initial_delay=2, max_retries=10):
27
+ embeddings = []
28
+ for text in text_list:
29
+ retries = 0
30
+ delay = initial_delay
31
+ while retries < max_retries:
32
+ try:
33
+ token_count = len(text.split())
34
+ if token_count > 16384:
35
+ print("Warning: Text chunk exceeds the token limit. Truncating the text.")
36
+ text = " ".join(text.split()[:16384])
37
+ response = client.embeddings.create(model="mistral-embed", inputs=[text])
38
+ embeddings.extend([embedding.embedding for embedding in response.data])
39
+ time.sleep(delay)
40
+ break
41
+ except Exception as e:
42
+ retries += 1
43
+ print(f"Rate limit exceeded, retrying in {delay} seconds... (Attempt {retries}/{max_retries})")
44
+ time.sleep(delay)
45
+ delay *= 2
46
+ if retries == max_retries:
47
+ print("Max retries reached. Skipping this chunk.")
48
+ break
49
+ return embeddings
50
 
51
+ # Cell 5: Function to store embeddings in a vector database
52
+ def store_embeddings_in_vector_db(
53
+ pdf_path: str,
54
+ vector_db_path: str,
55
+ annoy_index_path: str,
56
+ chunk_size: int = 2048,
57
+ overlap: int = 200,
58
+ num_trees: int = 10
59
  ):
60
+ doc = fitz.open(pdf_path)
61
+ all_embeddings = []
62
+ all_texts = []
63
+ total_pages = doc.page_count
64
+ logging.info(f"Processing PDF: {pdf_path} with {total_pages} pages.")
65
+
66
+ for page_num in range(total_pages):
67
+ page = doc.load_page(page_num)
68
+ text = page.get_text()
69
+ if text.strip():
70
+ chunks = split_text_into_chunks(text, chunk_size, overlap)
71
+ embeddings = get_text_embedding_with_rate_limit(chunks)
72
+ all_embeddings.extend(embeddings)
73
+ all_texts.extend(chunks)
74
+ logging.info(f"Processed page {page_num + 1}/{total_pages}, extracted {len(chunks)} chunks.")
75
+ else:
76
+ logging.warning(f"No text found on page {page_num + 1}.")
77
+
78
+ embeddings_np = np.array(all_embeddings).astype('float32')
79
+ with open(vector_db_path, "wb") as f:
80
+ dill.dump({'embeddings': embeddings_np, 'texts': all_texts}, f)
81
+ logging.info(f"Stored embeddings and texts to {vector_db_path}.")
82
+
83
+ if os.path.exists(annoy_index_path):
84
+ os.remove(annoy_index_path)
85
+ logging.info(f"Existing Annoy index at {annoy_index_path} removed.")
86
+
87
+ embedding_dim = embeddings_np.shape[1]
88
+ annoy_index = AnnoyIndex(embedding_dim, 'angular')
89
+ for i, embedding in enumerate(embeddings_np):
90
+ annoy_index.add_item(i, embedding)
91
+ annoy_index.build(num_trees)
92
+ annoy_index.save(annoy_index_path)
93
+ logging.info(f"Annoy index built with {len(all_embeddings)} items and saved to {annoy_index_path}.")
94
+
95
+ # Cell 6: Helper functions for text processing
96
+ def split_text_into_chunks(text: str, chunk_size: int = 2048, overlap: int = 200) -> List[str]:
97
+ tokens = text.split()
98
+ chunks = []
99
+ start = 0
100
+ while start < len(tokens):
101
+ end = start + chunk_size
102
+ chunk = " ".join(tokens[start:end])
103
+ chunks.append(chunk)
104
+ start += chunk_size - overlap
105
+ return chunks
106
+
107
+ class MistralRAGChatbot:
108
+ def __init__(self, vector_db_path: str, annoy_index_path: str):
109
+ self.embeddings, self.texts = self.load_vector_db(vector_db_path)
110
+ self.annoy_index = self.load_annoy_index(annoy_index_path, self.embeddings.shape[1])
111
+ self.tfidf_matrix, self.tfidf_vectorizer = self.calculate_tfidf(self.texts)
112
+ self.bm25 = BM25Okapi([text.split() for text in self.texts])
113
+ self.word2vec_model = self.train_word2vec(self.texts)
114
+ self.reranking_methods = {
115
+ 'reciprocal_rank_fusion': self.reciprocal_rank_fusion,
116
+ 'weighted_score_fusion': self.weighted_score_fusion,
117
+ 'semantic_similarity': self.semantic_similarity_reranking,
118
+ 'advanced_fusion': self.advanced_fusion_retrieval
119
+ }
120
+ logging.info("MistralRAGChatbot initialized successfully.")
121
+
122
+
123
+ def load_vector_db(self, vector_db_path: str) -> Tuple[np.ndarray, List[str]]:
124
+ with open(vector_db_path, "rb") as f:
125
+ data = dill.load(f)
126
+ embeddings = np.array(data['embeddings'], dtype='float32')
127
+ texts = data['texts']
128
+ logging.info(f"Loaded vector database from {vector_db_path} with {len(texts)} entries.")
129
+ return embeddings, texts
130
+
131
+ def load_annoy_index(self, annoy_index_path: str, embedding_dim: int) -> AnnoyIndex:
132
+ annoy_index = AnnoyIndex(embedding_dim, 'angular')
133
+ annoy_index.load(annoy_index_path)
134
+ logging.info(f"Loaded Annoy index from {annoy_index_path}.")
135
+ return annoy_index
136
+
137
+ def calculate_tfidf(self, texts: List[str]) -> Tuple[np.ndarray, TfidfVectorizer]:
138
+ vectorizer = TfidfVectorizer(stop_words='english')
139
+ tfidf_matrix = vectorizer.fit_transform(texts)
140
+ logging.info("TF-IDF matrix calculated.")
141
+ return tfidf_matrix, vectorizer
142
+
143
+ def train_word2vec(self, texts: List[str]) -> Word2Vec:
144
+ tokenized_texts = [text.split() for text in texts]
145
+ model = Word2Vec(sentences=tokenized_texts, vector_size=100, window=5, min_count=1, workers=4)
146
+ logging.info("Word2Vec model trained.")
147
+ return model
148
+
149
+ async def get_text_embedding(self, text: str, model: str = "mistral-embed") -> np.ndarray:
150
+ try:
151
+ response = await client.embeddings.create_async(model=model, inputs=[text])
152
+ return np.array(response.data[0].embedding)
153
+ except Exception as e:
154
+ logging.error(f"Error fetching embedding: {e}")
155
+ return np.zeros((1024,)) # Assuming embedding size of 384
156
+
157
+ def advanced_fusion_retrieval(self, user_query: str, docs: List[dict]) -> List[dict]:
158
+ query_embedding = self.create_embeddings([user_query])[0]
159
+
160
+ vector_scores = {doc['index']: doc['score'] for doc in docs if doc['method'] == 'annoy'}
161
+ bm25_scores = {doc['index']: doc['score'] for doc in docs if doc['method'] == 'bm25'}
162
+
163
+ sim_graph = nx.Graph()
164
+ sim_matrix = cosine_similarity(self.embeddings)
165
+ for i in range(len(self.embeddings)):
166
+ for j in range(i + 1, len(self.embeddings)):
167
+ if sim_matrix[i, j] > 0.5:
168
+ sim_graph.add_edge(i, j, weight=sim_matrix[i, j])
169
+
170
+ pagerank_scores = np.array(list(nx.pagerank(sim_graph, weight='weight').values()))
171
+
172
+ combined_scores = {}
173
+ for doc in docs:
174
+ idx = doc['index']
175
+ combined_scores[idx] = (
176
+ 0.5 * vector_scores.get(idx, 0) +
177
+ 0.3 * bm25_scores.get(idx, 0) +
178
+ 0.2 * pagerank_scores[idx]
179
+ )
180
+
181
+ sorted_indices = sorted(combined_scores, key=combined_scores.get, reverse=True)
182
+
183
+ return [{'text': self.texts[i], 'method': 'advanced_fusion', 'score': combined_scores[i], 'index': i} for i in sorted_indices[:5]]
184
+
185
+ def create_embeddings(self, text_list: List[str]) -> np.ndarray:
186
+ expected_dim = 1024 # The dimension expected by the Annoy index
187
+ embeddings = []
188
+ for text in text_list:
189
+ word_vectors = [self.word2vec_model.wv[token] for token in text.split() if token in self.word2vec_model.wv]
190
+ avg_embedding = np.mean(word_vectors, axis=0, dtype=np.float32) if word_vectors else np.zeros(self.word2vec_model.vector_size, dtype=np.float32)
191
+ if avg_embedding.shape[0] < expected_dim:
192
+ avg_embedding = np.pad(avg_embedding, (0, expected_dim - avg_embedding.shape[0]), 'constant')
193
+ elif avg_embedding.shape[0] > expected_dim:
194
+ avg_embedding = avg_embedding[:expected_dim]
195
+ embeddings.append(avg_embedding)
196
+ return np.array(embeddings, dtype=np.float32)
197
+
198
+
199
+ async def generate_response_with_rag(
200
+ self,
201
+ user_query: str,
202
+ model: str = "mistral-small-latest",
203
+ top_k: int = 10,
204
+ response_style: str = "Detailed",
205
+ selected_retrieval_methods: Optional[List[str]] = None,
206
+ selected_reranking_methods: Optional[List[str]] = None
207
+ ) -> Tuple[str, List[str], List[dict]]:
208
+ if not selected_retrieval_methods:
209
+ selected_retrieval_methods = ['annoy', 'tfidf', 'bm25', 'word2vec', 'euclidean', 'jaccard']
210
+ if not selected_reranking_methods:
211
+ selected_reranking_methods = ['reciprocal_rank_fusion', 'weighted_score_fusion', 'advanced_fusion']
212
+ query_embedding = await self.get_text_embedding(user_query)
213
+ retrieved_docs = self.retrieve_documents(user_query, query_embedding, top_k, selected_retrieval_methods)
214
+ reranked_docs = self.rerank_documents(user_query, retrieved_docs, selected_reranking_methods)
215
+ context = "\n\n".join([doc['text'] for doc in reranked_docs[:5]])
216
+ prompt = self.build_prompt(context, user_query, response_style)
217
+ try:
218
+ async_response = await client.chat.stream_async(model=model, messages=[{"role": "user", "content": prompt}])
219
+ response = ""
220
+ async for chunk in async_response:
221
+ response += chunk.data.choices[0].delta.content
222
+ logging.info("Response generated successfully.")
223
+ except Exception as e:
224
+ logging.error(f"Error generating response: {e}")
225
+ response = "An error occurred while generating the response."
226
+ return response, [doc['text'] for doc in reranked_docs[:5]], reranked_docs[:5]
227
+
228
+
229
+ def retrieve_documents(
230
+ self,
231
+ user_query: str,
232
+ query_embedding: np.ndarray,
233
+ top_k: int,
234
+ selected_methods: List[str]
235
+ ) -> List[dict]:
236
+ all_docs = []
237
+ for method in selected_methods:
238
+ indices, scores = getattr(self, f"retrieve_with_{method}")(user_query, query_embedding, top_k)
239
+ for idx, score in zip(indices, scores):
240
+ all_docs.append({
241
+ 'text': self.texts[idx],
242
+ 'method': method,
243
+ 'score': score,
244
+ 'index': idx
245
+ })
246
+ return all_docs
247
+
248
+ def retrieve_with_annoy(self, user_query: str, query_embedding: np.ndarray, top_k: int) -> Tuple[List[int], List[float]]:
249
+ n_results = min(top_k, len(self.texts))
250
+ indices, distances = self.annoy_index.get_nns_by_vector(query_embedding, n_results, include_distances=True)
251
+ scores = [1.0 - (dist / max(distances)) for dist in distances] # Normalize distances to a [0, 1] score
252
+ logging.debug(f"Annoy retrieval returned {len(indices)} documents.")
253
+ return indices, scores
254
+
255
+ def retrieve_with_tfidf(self, user_query: str, query_embedding: np.ndarray, top_k: int) -> Tuple[List[int], List[float]]:
256
+ query_vec = self.tfidf_vectorizer.transform([user_query])
257
+ similarities = cosine_similarity(query_vec, self.tfidf_matrix).flatten()
258
+ indices = np.argsort(-similarities)[:top_k]
259
+ logging.debug(f"TF-IDF retrieval returned {len(indices)} documents.")
260
+ return indices, similarities[indices].tolist()
261
+
262
+ def retrieve_with_bm25(self, user_query: str, query_embedding: np.ndarray, top_k: int) -> Tuple[List[int], List[float]]:
263
+ tokenized_query = user_query.split()
264
+ scores = self.bm25.get_scores(tokenized_query)
265
+ indices = np.argsort(-scores)[:top_k]
266
+ logging.debug(f"BM25 retrieval returned {len(indices)} documents.")
267
+ return indices, scores[indices].tolist()
268
+
269
+ def retrieve_with_word2vec(self, user_query: str, query_embedding: np.ndarray, top_k: int) -> Tuple[List[int], List[float]]:
270
+ query_tokens = user_query.split()
271
+ query_vec = np.mean([self.word2vec_model.wv[token] for token in query_tokens if token in self.word2vec_model.wv], axis=0)
272
+ expected_dim = query_vec.shape[0]
273
+ doc_vectors = []
274
+ for doc in self.texts:
275
+ word_vectors = [self.word2vec_model.wv[token] for token in doc.split() if token in self.word2vec_model.wv]
276
+ avg_vector = np.mean(word_vectors, axis=0) if word_vectors else np.zeros(expected_dim)
277
+ doc_vectors.append(avg_vector)
278
+ doc_vectors = np.array(doc_vectors)
279
+ similarities = cosine_similarity([query_vec], doc_vectors).flatten()
280
+ indices = np.argsort(-similarities)[:top_k]
281
+ return indices, similarities[indices].tolist()
282
+
283
+ def retrieve_with_euclidean(self, user_query: str, query_embedding: np.ndarray, top_k: int) -> Tuple[List[int], List[float]]:
284
+ distances = euclidean_distances([query_embedding], self.embeddings).flatten()
285
+ indices = np.argsort(distances)[:top_k]
286
+ logging.debug(f"Euclidean retrieval returned {len(indices)} documents.")
287
+ return indices, distances[indices].tolist()
288
+
289
+ def retrieve_with_jaccard(self, user_query: str, query_embedding: np.ndarray, top_k: int) -> Tuple[List[int], List[float]]:
290
+ query_set = set(user_query.lower().split())
291
+ scores = []
292
+ for doc in self.texts:
293
+ doc_set = set(doc.lower().split())
294
+ intersection = query_set.intersection(doc_set)
295
+ union = query_set.union(doc_set)
296
+ score = float(len(intersection)) / len(union) if union else 0
297
+ scores.append(score)
298
+ indices = np.argsort(-np.array(scores))[:top_k]
299
+ logging.debug(f"Jaccard retrieval returned {len(indices)} documents.")
300
+ return indices.tolist(), [scores[i] for i in indices]
301
+
302
+ def rerank_documents(
303
+ self,
304
+ user_query: str,
305
+ retrieved_docs: List[dict],
306
+ selected_methods: List[str]
307
+ ) -> List[dict]:
308
+ reranked_docs = retrieved_docs
309
+ for method in selected_methods:
310
+ if method == 'advanced_fusion':
311
+ reranked_docs = self.advanced_fusion_retrieval(user_query, reranked_docs)
312
+ else:
313
+ reranked_docs = self.reranking_methods[method](user_query, reranked_docs)
314
+
315
+ return reranked_docs
316
+
317
+ def reciprocal_rank_fusion(self, user_query: str, docs: List[dict]) -> List[dict]:
318
+ k = 60 # fusion parameter
319
+ method_ranks = {}
320
+ fused_scores = {} # Initialize fused_scores here
321
+ for doc in docs:
322
+ method = doc['method']
323
+ if method not in method_ranks:
324
+ method_ranks[method] = {doc['index']: 1}
325
+ else:
326
+ method_ranks[method][doc['index']] = len(method_ranks[method]) + 1
327
+ for doc in docs:
328
+ idx = doc['index']
329
+ if idx not in fused_scores:
330
+ fused_scores[idx] = sum(1 / (k + rank) for method_rank in method_ranks.values() for i, rank in method_rank.items() if i == idx)
331
+ reranked_docs = sorted(docs, key=lambda x: fused_scores.get(x['index'], 0), reverse=True) # Use get() to handle missing keys
332
+ for doc in reranked_docs:
333
+ doc['rrf_score'] = fused_scores.get(doc['index'], 0) # Use get() to handle missing keys
334
+ return reranked_docs
335
+
336
+ def weighted_score_fusion(self, user_query: str, docs: List[dict]) -> List[dict]:
337
+ method_weights = {
338
+ 'annoy': 0.3,
339
+ 'tfidf': 0.2,
340
+ 'bm25': 0.2,
341
+ 'word2vec': 0.1,
342
+ 'euclidean': 0.1,
343
+ 'jaccard': 0.1
344
+ }
345
+ fused_scores = {}
346
+ for doc in docs:
347
+ idx = doc['index']
348
+ if idx not in fused_scores:
349
+ fused_scores[idx] = doc['score'] * method_weights[doc['method']]
350
+ else:
351
+ fused_scores[idx] += doc['score'] * method_weights[doc['method']]
352
+
353
+ reranked_docs = sorted(docs, key=lambda x: fused_scores[x['index']], reverse=True)
354
+ for doc in reranked_docs:
355
+ doc['wsf_score'] = fused_scores[doc['index']]
356
+ return reranked_docs
357
+
358
+ def semantic_similarity_reranking(self, user_query: str, docs: List[dict]) -> List[dict]:
359
+ query_embedding = np.mean([self.word2vec_model.wv[token] for token in user_query.split() if token in self.word2vec_model.wv], axis=0)
360
+ for doc in docs:
361
+ doc_embedding = np.mean([self.word2vec_model.wv[token] for token in doc['text'].split() if token in self.word2vec_model.wv], axis=0)
362
+ doc_embedding = doc_embedding if doc_embedding.shape == query_embedding.shape else np.zeros(query_embedding.shape)
363
+ doc['semantic_score'] = cosine_similarity([query_embedding], [doc_embedding])[0][0]
364
+ return sorted(docs, key=lambda x: x['semantic_score'], reverse=True)
365
+
366
+ def build_prompt(self, context: str, user_query: str, response_style: str) -> str:
367
+ styles = {
368
+ "detailed": "Provide a comprehensive and detailed answer based on the provided context.",
369
+ "concise": "Provide a brief and concise answer based on the provided context.",
370
+ "creative": "Provide a creative and engaging answer based on the provided context.",
371
+ "technical": "Provide a technical and in-depth answer based on the provided context."
372
+ }
373
+
374
+ style_instruction = styles.get(response_style.lower(), styles["detailed"])
375
+
376
+ if not context or not self.is_context_relevant(context, user_query):
377
+ prompt = f"""You are an intelligent assistant.
378
+
379
+ User Question:
380
+ {user_query}
381
+
382
+ Instruction:
383
+ The document database does not contain relevant information to answer the question. Please inform the user that no relevant documents were found and refrain from generating an imaginative or unrelated response."""
384
+ else:
385
+ prompt = f"""You are an intelligent assistant.
386
+
387
+ Context:
388
+ {context}
389
+
390
+ User Question:
391
+ {user_query}
392
+
393
+ Instruction:
394
+ {style_instruction}"""
395
+
396
+ logging.debug("Prompt constructed for response generation.")
397
+ return prompt
398
+
399
+ def is_context_relevant(self, context: str, user_query: str) -> bool:
400
+ context_lower = context.lower()
401
+ user_query_lower = user_query.lower()
402
+ query_terms = set(user_query_lower.split())
403
+ context_terms = set(context_lower.split())
404
+ common_terms = query_terms.intersection(context_terms)
405
+ return len(common_terms) > len(query_terms) * 0.2
406
+
407
+ # Cell 8: Store embeddings in vector DB and Annoy index
408
+ def create_vector_db_and_annoy_index(pdf_path, vector_db_path, annoy_index_path):
409
+ store_embeddings_in_vector_db(pdf_path, vector_db_path, annoy_index_path)
410
+ print("Vector database and Annoy index creation completed.")
411
+
412
+ # Cell 9: Run the store embeddings function (example)
413
+ # Replace 'example.pdf' with your PDF file path.
414
+ # It will create 'vector_db.pkl' and 'vector_index.ann'
415
+ create_vector_db_and_annoy_index('med.pdf', 'vector_db.pkl', 'vector_index.ann')
416
+
417
+ # # Cell 10: Query the chatbot with user input
418
+ # async def query_chatbot():
419
+ # vector_db_path = "vector_db.pkl"
420
+ # annoy_index_path = "vector_index.ann"
421
+ # chatbot = MistralRAGChatbot(vector_db_path, annoy_index_path)
422
+
423
+ # user_query = input("Please enter your query: ")
424
+ # response_style = input("Please choose response style (Detailed, Concise, Creative, Technical): ").strip().lower()
425
+ # selected_retrieval_methods = input("Please choose retrieval methods (comma-separated: annoy, tfidf, bm25, euclidean, jaccard): ")
426
+ # selected_reranking_methods = input("Please choose reranking methods (comma-separated: advanced_fusion, reciprocal_rank_fusion, weighted_score_fusion, semantic_similarity): ")
427
+
428
+ # selected_retrieval_methods_list = [method.strip() for method in selected_retrieval_methods.split(',') if method.strip()]
429
+ # selected_reranking_methods_list = [method.strip() for method in selected_reranking_methods.split(',') if method.strip()]
430
+
431
+ # response, retrieved_docs, source_info = await chatbot.generate_response_with_rag(
432
+ # user_query=user_query,
433
+ # response_style=response_style,
434
+ # selected_retrieval_methods=selected_retrieval_methods_list,
435
+ # selected_reranking_methods=selected_reranking_methods_list
436
+ # )
437
+
438
+ # print("\nResponse:")
439
+ # print(response)
440
+ # print("\nRetrieved and Reranked Documents:")
441
+ # for idx, doc_info in enumerate(source_info, start=1):
442
+ # print(f"\nDocument {idx}:")
443
+ # print(f"Content Preview: {doc_info['text'][:200]}...")
444
+ # print(f"Original Retrieval Method: {doc_info['method']}")
445
+ # if 'score' in doc_info:
446
+ # print(f"Original Score: {doc_info['score']:.4f}")
447
+ # for key, value in doc_info.items():
448
+ # if key.endswith('_score') and key != 'score':
449
+ # print(f"{key.replace('_', ' ').title()}: {value:.4f}")
450
+
451
+ # import asyncio
452
+
453
+ # async def query_chatbot2():
454
+ # vector_db_path = "vector_db.pkl"
455
+ # annoy_index_path = "vector_index.ann"
456
+ # chatbot = MistralRAGChatbot(vector_db_path, annoy_index_path)
457
+
458
+ # user_query = "what is the name of the patient"
459
+ # response_style = "Concise"
460
+ # selected_retrieval_methods_list = ["tfidf", "bm25"]
461
+ # selected_reranking_methods_list = ["reciprocal_rank_fusion"]
462
+
463
+ # try:
464
+ # response, retrieved_docs, source_info = await chatbot.generate_response_with_rag(
465
+ # user_query=user_query,
466
+ # response_style=response_style,
467
+ # selected_retrieval_methods=selected_retrieval_methods_list,
468
+ # selected_reranking_methods=selected_reranking_methods_list
469
+ # )
470
+
471
+ # print("\n--- Response ---")
472
+ # print(response)
473
+
474
+ # print("\n--- Retrieved and Reranked Documents ---")
475
+ # for idx, doc_info in enumerate(source_info, start=1):
476
+ # print(f"\nDocument {idx}:")
477
+ # print(f"Content Preview: {doc_info['text'][:150]}...") # Show a preview of the document content
478
+ # print(f"Original Retrieval Method: {doc_info['method']}")
479
+ # if 'score' in doc_info:
480
+ # print(f"Original Score: {doc_info['score']:.4f}")
481
+
482
+ # # Display scores from specific reranking methods
483
+ # if 'rrf_score' in doc_info:
484
+ # print(f"Reciprocal Rank Fusion Score (RRF): {doc_info['rrf_score']:.4f}")
485
+ # if 'wsf_score' in doc_info:
486
+ # print(f"Weighted Score Fusion (WSF) Score: {doc_info['wsf_score']:.4f}")
487
+ # if 'semantic_score' in doc_info:
488
+ # print(f"Semantic Similarity Score: {doc_info['semantic_score']:.4f}")
489
+ # if 'pagerank_score' in doc_info:
490
+ # print(f"PageRank Score: {doc_info['pagerank_score']:.4f}")
491
+ # if 'advanced_fusion_score' in doc_info:
492
+ # print(f"Advanced Fusion Score: {doc_info['advanced_fusion_score']:.4f}")
493
+
494
+ # except Exception as e:
495
+ # logging.error(f"Error generating response: {e}")
496
+ # print("\nResponse:")
497
+ # print("An error occurred while generating the response.")
498
+
499
+ # # Call the function in a Jupyter notebook environment
500
+ # await query_chatbot()
501
+
502
+ import gradio as gr
503
+
504
+ def chatbot_interface(user_query, response_style, selected_retrieval_methods, selected_reranking_methods, chunk_size, overlap):
505
+ vector_db_path = "vector_db.pkl"
506
+ annoy_index_path = "vector_index.ann"
507
+
508
+ # Load the documents and create embeddings with the provided chunk_size and overlap
509
+ store_embeddings_in_vector_db('med.pdf', 'vector_db.pkl', 'vector_index.ann', chunk_size, overlap)
510
+
511
+ chatbot = MistralRAGChatbot(vector_db_path, annoy_index_path)
512
+
513
+ selected_retrieval_methods_list = [method.strip() for method in selected_retrieval_methods.split(',') if method.strip()]
514
+ selected_reranking_methods_list = [method.strip() for method in selected_reranking_methods.split(',') if method.strip()]
515
+
516
+ response, retrieved_docs, source_info = asyncio.run(chatbot.generate_response_with_rag(
517
+ user_query=user_query,
518
+ response_style=response_style,
519
+ selected_retrieval_methods=selected_retrieval_methods_list,
520
+ selected_reranking_methods=selected_reranking_methods_list
521
+ ))
522
+
523
+ formatted_response = f"**Response:**\n{response}\n\n"
524
+ formatted_response += "**Retrieved and Reranked Documents:**\n"
525
+ for idx, doc_info in enumerate(source_info, start=1):
526
+ formatted_response += f"\n**Document {idx}:**\n"
527
+ formatted_response += f"Content Preview: {doc_info['text'][:200]}...\n"
528
+ formatted_response += f"Original Retrieval Method: {doc_info['method']}\n"
529
+ if 'score' in doc_info:
530
+ formatted_response += f"Original Score: {doc_info['score']:.4f}\n"
531
+ for key, value in doc_info.items():
532
+ if key.endswith('_score') and key != 'score':
533
+ formatted_response += f"{key.replace('_', ' ').title()}: {value:.4f}\n"
534
+
535
+ return formatted_response
536
+
537
+ iface = gr.Interface(
538
+ fn=chatbot_interface,
539
+ theme=gr.themes.Soft(),
540
+ inputs=[
541
+ gr.Textbox(lines=5, label="User Query"),
542
+ gr.Dropdown(["Detailed", "Concise", "Creative", "Technical"], label="Response Style"),
543
+ gr.Dropdown(["annoy", "tfidf", "bm25", "euclidean", "jaccard"], label="Retrieval Methods", multiselect=True), # This line is changed
544
+ gr.Dropdown(["advanced_fusion", "reciprocal_rank_fusion", "weighted_score_fusion", "semantic_similarity"], label="Reranking Methods"),
545
+ gr.Slider(minimum=1024, maximum=2048, step=128, value=2048, label="Chunk Size"),
546
+ gr.Slider(minimum=100, maximum=300, step=100, value=200, label="Overlap")
547
  ],
548
+ outputs=gr.Textbox(label="Chatbot Response"),
549
+ title="Chat with Document"
550
  )
551
 
552
+ iface.launch()