Tushar Malik commited on
Commit
9e30ce1
·
verified ·
1 Parent(s): 9582098

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -21
app.py CHANGED
@@ -413,7 +413,7 @@ def create_vector_db_and_annoy_index(pdf_path, vector_db_path, annoy_index_path)
413
  # Cell 9: Run the store embeddings function (example)
414
  # Replace 'example.pdf' with your PDF file path.
415
  # It will create 'vector_db.pkl' and 'vector_index.ann'
416
- #create_vector_db_and_annoy_index(pdf_path, 'vector_db.pkl', 'vector_index.ann')
417
 
418
  # # Cell 10: Query the chatbot with user input
419
  # async def query_chatbot():
@@ -502,32 +502,16 @@ def create_vector_db_and_annoy_index(pdf_path, vector_db_path, annoy_index_path)
502
 
503
  import gradio as gr
504
 
505
- def chatbot_interface(user_query, response_style, selected_retrieval_methods, selected_reranking_methods, pdf_file, chunk_size, overlap):
506
  vector_db_path = "vector_db.pkl"
507
  annoy_index_path = "vector_index.ann"
508
 
509
 
510
 
511
 
512
- if pdf_file is not None:
513
- pdf_path = pdf_file.name # Get the file path
514
- # Now you can process the file path as needed
515
- return f"File path: {pdf_path}\nUser Query: {user_query}\nResponse Style: {response_style}\nRetrieval Methods: {retrieval_methods}\nReranking Methods: {reranking_methods}\nChunk Size: {chunk_size}\nOverlap: {overlap}"
516
- else:
517
- return "No file uploaded."
518
- # Create vector DB and Annoy index
519
- create_vector_db_and_annoy_index(pdf_path, vector_db_path, annoy_index_path)
520
- store_embeddings_in_vector_db(pdf_path, 'vector_db.pkl', 'vector_index.ann', chunk_size, overlap)
521
- # if pdf_file is not None:
522
- # pdf_path = pdf_file.name # Get the path of the uploaded file
523
- # create_vector_db_and_annoy_index(pdf_path, 'vector_db.pkl', 'vector_index.ann')
524
- # store_embeddings_in_vector_db(pdf_path, 'vector_db.pkl', 'vector_index.ann', chunk_size, overlap)
525
-
526
- # else:
527
- # return "Please upload a PDF file."
528
-
529
- # Load the documents and create embeddings with the provided chunk_size and overlap
530
- #store_embeddings_in_vector_db('med.pdf', 'vector_db.pkl', 'vector_index.ann', chunk_size, overlap)
531
 
532
  chatbot = MistralRAGChatbot(vector_db_path, annoy_index_path)
533
 
 
413
  # Cell 9: Run the store embeddings function (example)
414
  # Replace 'example.pdf' with your PDF file path.
415
  # It will create 'vector_db.pkl' and 'vector_index.ann'
416
+ create_vector_db_and_annoy_index('med.pdf', 'vector_db.pkl', 'vector_index.ann')
417
 
418
  # # Cell 10: Query the chatbot with user input
419
  # async def query_chatbot():
 
502
 
503
  import gradio as gr
504
 
505
+ def chatbot_interface(user_query, response_style, selected_retrieval_methods, selected_reranking_methods, chunk_size, overlap):
506
  vector_db_path = "vector_db.pkl"
507
  annoy_index_path = "vector_index.ann"
508
 
509
 
510
 
511
 
512
+
513
+ #Load the documents and create embeddings with the provided chunk_size and overlap
514
+ store_embeddings_in_vector_db('med.pdf', 'vector_db.pkl', 'vector_index.ann', chunk_size, overlap)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
515
 
516
  chatbot = MistralRAGChatbot(vector_db_path, annoy_index_path)
517