Spaces:
Sleeping
Sleeping
import os | |
import re | |
import string | |
from sentence_transformers import SentenceTransformer | |
from langchain_text_splitters import CharacterTextSplitter | |
import pandas as pd | |
DATA_FILE_PATH = os.path.join(os.path.dirname(os.path.realpath(__file__)), "CountMonteCristoFull.txt") | |
DENSE_RETRIEVER_MODEL_NAME = "all-MiniLM-L6-v2" | |
CROSS_ENCODER_MODEL_NAME = 'cross-encoder/ms-marco-MiniLM-L-12-v2' | |
LLM_CORE_MODEL_NAME = "groq/llama3-8b-8192" | |
with open(DATA_FILE_PATH, "r", encoding="utf-8") as f: | |
data_corpus = f.read() | |
splitter = CharacterTextSplitter(separator="\n\n", chunk_size=10_000, chunk_overlap=1_000) | |
text_chunks = splitter.create_documents([data_corpus]) | |
prev_chapter_name = '' | |
for chunk in text_chunks: | |
chunk.metadata['belongs_to'] = set() | |
curr_chapter_name = '' | |
index_start_chapter_name = chunk.page_content.find('Chapter') | |
if index_start_chapter_name == -1: | |
curr_chapter_name = prev_chapter_name | |
else: | |
# if prev_chapter_name is not empty and next chapter start further than first 40% of the chunk. | |
# This means that the name of the prev chapter isn't in this chunk, but relevant info can be found. | |
if prev_chapter_name != '' and index_start_chapter_name > int(len(chunk.page_content) * 0.4): | |
chunk.metadata['belongs_to'].add(prev_chapter_name) | |
index_end_chapter_name = chunk.page_content.find('\n\n', index_start_chapter_name) | |
curr_chapter_name = chunk.page_content[index_start_chapter_name:index_end_chapter_name] | |
prev_chapter_name = curr_chapter_name | |
chunk.metadata['belongs_to'].add(curr_chapter_name) | |
chunk.metadata['belongs_to'] = list(chunk.metadata['belongs_to']) | |
def clean_text(text): | |
text = text.translate(str.maketrans('', '', string.punctuation)) | |
text = text.lower() | |
text = re.sub(r'[^a-zA-Z0-9\s]', '', text) | |
text = re.sub(r'\s+', ' ', text) | |
return text.strip() | |
dense_model = SentenceTransformer(DENSE_RETRIEVER_MODEL_NAME) | |
def calculate_embeddings(text): | |
return dense_model.encode(text, convert_to_tensor=True) | |
chunked_data_corpus = [] | |
for index, chunk in enumerate(text_chunks): | |
chunked_data_corpus.append({ | |
'raw_text': chunk.page_content, | |
'cleaned_text': clean_text(chunk.page_content), | |
'chunk_embedding': calculate_embeddings(chunk.page_content), | |
'chapter_name': chunk.metadata['belongs_to'] | |
}) | |
chunked_data_corpus_df = pd.DataFrame(chunked_data_corpus) | |
chunked_data_corpus_df.to_csv('chunked_data_corpus.csv', index=False) |