RabotiahovDmytro's picture
Update chatbot/bot.py
c9d4d57 verified
from chatbot.retriever import HybridRetrieverReranker
from litellm import completion
import os
import ast
GROQ_API_KEY = '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'
DENSE_RETRIEVER_MODEL_NAME = "all-MiniLM-L6-v2"
CROSS_ENCODER_MODEL_NAME = "cross-encoder/ms-marco-MiniLM-L-12-v2"
LLM_CORE_MODEL_NAME = "groq/llama3-8b-8192"
class QuestionAnsweringBot:
def __init__(self, docs, enable_bm25=True, enable_dense=True, enable_rerank=True, top_k_bm25=60, top_n_dense=30, top_n_rerank=2) -> None:
self.retriever = HybridRetrieverReranker(docs)
self.enable_bm25 = enable_bm25
self.enable_dense = enable_dense
self.enable_rerank = enable_rerank
self.top_k_bm25=top_k_bm25
self.top_n_dense=top_n_dense
self.top_n_rerank=top_n_rerank
def __get_answer__(self, question: str) -> str:
PROMPT = """\
You are an intelligent assistant designed to provide accurate and relevant answers based on the provided context.
Rules:
- Always analyze the provided context thoroughly before answering.
- Respond with factual and concise information.
- If context is ambiguous or insufficient or you can't find answer, say 'I don't know.'
- Do not speculate or fabricate information beyond the provided context.
- Follow user instructions on the response style(default style is detailed response if user didn't provide any specifications):
- If the user asks for a detailed response, provide comprehensive explanations.
- If the user requests brevity, give concise and to-the-point answers.
- When applicable, summarize and synthesize information from the context to answer effectively.
- Avoid using information outside the given context.
"""
context = self.retriever.hybrid_retrieve(question,
enable_bm25=self.enable_bm25,
enable_dense=self.enable_dense,
enable_rerank=self.enable_rerank,
top_k_bm25=self.top_k_bm25,
top_n_dense=self.top_n_dense,
top_n_rerank=self.top_n_rerank
)
context_text = [doc['raw_text'] for doc in context]
response = completion(
model=LLM_CORE_MODEL_NAME,
temperature=0.0,
messages=[
{"role": "system", "content": PROMPT},
{"role": "user", "content": f"Context: {context_text}\nQuestion: {question}"}
],
api_key=GROQ_API_KEY
)
return response, context
def form_response(self, question):
llm_response, context = self.__get_answer__(question)
metadata_raw = [doc['chapter_name'] for doc in context]
metadata_cleaned = [ast.literal_eval(item) for item in metadata_raw]
print('User:', question)
print('System:', llm_response.choices[0].message.content)
return f"**{llm_response.choices[0].message.content}**\n\nResources: {[chapter for doc in metadata_cleaned for chapter in doc]}"